跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳韻如
Yun-Ju Chen
論文名稱: 無線感測網路能源效率之分析、評估與改善
Energy Efficiency in Wireless Sensor Networks: Analysis, Evaluation and Improvements
指導教授: 許健平
Jang-Ping Sheu
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
畢業學年度: 93
語文別: 英文
論文頁數: 46
中文關鍵詞: 載波感測多重存取協定能源效率分析模型競爭時框
外文關鍵詞: energy efficiency analysis, contention window, CSMA
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無線感測網路(wireless sensor networks)是一種不同於傳統網路新興的改革性技術,結合科技與生活帶給人類更多的舒適與實利。最近公佈的一份 IEEE 802.15.4 規格書就是專門為這類低功耗、低資料量的無線個人區域網路 (LR-WPAN) 所制定的標準。隨著無線感測網路越來越受重視,相關的系統內部運作之最佳化與校調就顯的非常重要。在無線感測網路設計建構中,由於硬體上的限制,使得省電措施不可或缺。因此在本論文中,我們針對提升能源效率 (energy efficiency) ,提出並且詳細敘述一組分析的模型,我們稱之為延伸性的線性反饋模型(extended linear feedback model) 。我們利用這組模型來分析無線感測網路在資料傳輸時必須耗費的電量。
    最後,評估與模擬的數據結果顯示,資料傳輸時所使用的載波感測多重多重存取協定 (CSMA protocol) 如果採用固定的競爭時框 (contention window) 所必須耗費的電量會比採用二進指數退避 (binary exponential backoff) 少。另外,在採用固定競爭時框的載波感測多重多重存取協定的運作過程中,我們可以找出一個最佳的競爭時框值,使得資料可以透過最少的耗電量被成功的傳輸。


    Wireless sensor network, a revolutionary technology of the traditional network, attracts lots of researchers with new applications. While the recently released IEEE 802.15.4 standard has given us a general inspection over the implementation of wireless sensor networks, specifically analyzing and optimizing some details in MAC layer seems practical and vital. Motivating by the importance of energy conservation in wireless sensor networks, this thesis focuses on providing an in-depth study on the analytical model modifies from linear feedback model in order to deal with the binary exponential backoff mechanism adopted in IEEE 802.15.4 CSMA/CA and improving the energy efficiency with this analytical model.
    The numerical results show that the energy consumption in wireless sensor networks can be reduced by applying CAMA protocol with fixed contention window. Besides, an optimal contention window that achieves best effective energy consumption is derived from the use of fixed contention window. Effective energy consumption is defined as the minimum energy consumption for successful packet transmission.

    1. INTRODUCTION 1 2. PRELIMARY 5 2.1 Carrier Sense Multiple Access (CSMA) Protocols 5 2.2 The Linear Feedback Model 9 2.3 Summary 10 3. ENERGY EFFICIENCY ANALYSIS 12 3.1 The Extended Linear Feedback Model 12 3.2 A Discrete-Time Markov Chain Model for System Status 14 3.3 Energy Consumption Analysis in Wireless Sensor Networks 20 3.4 Summary 25 4. NUMERICAL RESULTS 26 5. CONCLUSION 41 REFERENCE 43

    [1] IEEE, “IEEE Standard for Information Technology – Telecommunications and Information Exchange between Systems – Local and Metropolitan Area Networks – Specific Requirements – Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs),” IEEE Std 802.15.4-2003, IEEE, New York, 2003.
    [2] G. Bianchi, “Performance Analysis of the IEEE 802.11 Distributed Coordination Function,” IEEE Journal on Selected Areas in Communications, Vol.18, No.3, pp.535-547, March, 2000.
    [3] H. Wu, Y. Peng, K. Long, S. Cheng, “ A simple model of IEEE 802.11 wireless LAN ,” in Proceedings of International Conferences on Info-tech and Info-net, Vol. 2, pp.514-519, Beijing, China, 29 October-1 November, 2001.
    [4] C. H. Foh, M. Zukerman, “Performance Analysis of the IEEE 802.11 MAC Protocol,” in Proceedings of European Wireless 2002, pp.49-55, Florence, Italy, 25-28 February, 2002.
    [5] Y.C. Tay, K. C.Chua, “A Capacity Analysis for the IEEE 802.11 MAC Protocol,” Wireless Networks, Vol. 7, Issue 2, pp.159-171, March-April, 2001
    [6] Q. Ni, I. Aad, C. Barakat, T. Turletti, “Modeling and Analysis of Slow CW Decrease for IEEE 802.11 WLAN ,“ in Proceedings of 14th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Vol.2, pp.1717-1721, Beijing, China, 7-10 September, 2003.
    [7] Y. Chen, Q. A. Zeng, D. P. Agrawal, “Performance Analysis and Enhancement for IEEE 802.11 MAC Protocol,” in Proceedings of the 10th IEEE International Conference on Telecommunications, Vol.1, pp.860-867, Tahiti, Papeete, French Polynesia, 23 February – 1 March, 2003.
    [8] F. A. Tobagi, L. Kleinrock, “Packet Switching in Radio Channels: Part IV – Stability Considerations and Dynamic Control in Carrier Sensoe Multiple Access,” IEEE Transaction on Communications, Vol. COM-25, No. 10, October, 1977.
    [9] G. Lu, B. Krishnamachar, C. S. Raghavendra, “Performance Evaluation of the IEEE 802.15.4 MAC for Low-Rate Low-Power Wireless Networks,” in Proceedings of the 23rd IEEE International Performance, Computing, and Communications Conference, pp.701-706, Phoenix, Arizona, USA, 15-17 April, 2004.
    [10] J. Mišić, V. B. Mišić, S. Shafi, “Performance of IEEE 802.15.4 Beacon Enabled PAN with Uplink Transmission in Non-Saturation Mode – Access Delay for Finite Buffers,” in Proceedings of the 1st IEEE International Conference on Broadband Networks, pp.416-425, San José, California, USA, 25-29 October, 2004.
    [11] Data sheet for CC2420 2.4GHz IEEE 802.15.4/ZigBee RF ransceiver, available on line at http:// www.chipcon.com/files/CC2420_Data_Sheet_1_2.pdf.
    [12] Data sheet for Crossbow wireless sensor networks radio module: MPR2400 - MICAz ZigBee series, available on line at http://www.xbow.com/ Products/Product_pdf_files/Wireless_pdf/MICAz_Datasheet.pdf.
    [13] L. Kleinrock, “Packet Switching in Radio Channels: Part I – Carrier Sense Multiple-Access Modes and Their Throughput-Delay Characteristics,” IEEE Transactions on Communications, Vol. COM-23, No.12, December, 1975.
    [14] IEEE, “IEEE Standard for Information Technology – Telecommunications and Information Exchange between Systems – Local and Metropolitan Area Networks – Specific Requirements – Part 11: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications,” IEEE Std 802.11-1999, IEEE, New York, 1999.
    [15] L. Kleinrock, “Queuing Systems: Vol. I. – Theory,” John Wiley and Sons, New York, 1976.
    [16] V. Shnayder, M. Hempstead, B. Chen, G. W. Allen, M. Welsh, “Simulating the Power Consumption of Large-Scale Sensor Network Applications,” in Proceedings of the 2nd International Conference on Embedded Networked Sensor System, pp.188-200, Baltimore, MD, USA, 3-5 November, 2004
    [17] P. Levis, N. Lee, M. Welsh, D. Culler, “TOSSIM: Accurate and Scalable Simulation of Entire TinyOS Applications,” in Proceedings of the 1stIinternational Conference on Embedded Networked Sensor Systems, pp.126-137, Los Angeles, California, USA, 5-7 November, 2003
    [18] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, K. Pister, “System Architecture Directions for Networked Sensors,” in Proceedings of the 9th International Conference on Architectural Support for Programming Languages and Operating Systems, PP.9.-104, Cambridge, MA, USA, 12-15 November, 2000

    QR CODE
    :::