跳到主要內容

簡易檢索 / 詳目顯示

研究生: 羅詔元
Chao-yuan Lo
論文名稱: 以位相連續性法則偵測影像與空載雷射資料之幾何特徵
Topological Connection Analyses of Feature Detection for Imagery and Airborne LIDAR Data
指導教授: 陳良健
Liang-Chien Chen
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 85
中文關鍵詞: 特徵萃取角點影像光達
外文關鍵詞: Feature Detection, Edges, Corners, Imagery, LIDAR
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 線與角點為建構二維面與三維面的基本元件,這些特徵的幾何資訊可供相關應用比較分析的依據,如資料套和、影像匹配、模型重建與變遷偵測等。既有研究主要藉由調整門檻與建立基本元件萃取特徵,然而,此舉需依目標複雜度經門檻測試以達到成果最佳化。由於線特徵具明確的幾何特性與特徵連續性,故本研究提出位相連續性法則分析局部差異性以萃取特徵,並維持特徵之連續性,此舉可取代門檻調整過程及提升處理自動化程度。本研究在影像處理中,使用單一固定門檻進行高斯平滑處理,此門檻為依據既有研究之經驗值予以設定,以同時萃取線與角點特徵。於光達資料處理中,本研究省略面偵測與面交會過程,直接使用單一固定高程差門檻從空載光達點雲中萃取三維線特徵,此門檻為依據最小牆高值給定。此外,本研究之處理目標亦包含屋頂女兒牆之線型。在驗證部分,萃取之特徵經人工產製的參考資料比對後,顯示本研究可經由較高之自動化處理過程獲取無失品質的特徵成果。


    Edges and corners are important components in constructing planimetric planes and 3-dimensional facades. Feature geometry can also support related processes for advanced analyses including data registration, image matching, object modeling, and change detection. Conventional methods have focused on the threshold operation or primitive comparison to identify features. Because these predefined constraints may require optimization according to prior experience for various targets, however, a new, alternative for feature detection without threshold selection is needed. Because one edge should suffice for the specific geometry and connected elements, the proposed scheme in this study analyzed the local relief with topological connection criteria instead of threshold operation to improve the detection ability and automation. In image processing, one constant threshold was used for Gaussian smoothing (a method adopted in related works) to detect edges, and image corners were specifically addressed. In comparison, LIDAR (LIght Detection and Ranging) processing uses one fixed relief threshold to detect 3-dimensional lines, including parapets on rooftops, from airborne LIDAR data without surface determination and intersection. This relief threshold was related to the minimum wall height, and in the validation process the detected features were compared with references identified through visual perception. Based on these comparisons, the proposed scheme achieved higher automation without losing detection quality.

    摘 要 i ABSTRACT ii 誌 謝 iii CONTENTS iv LIST OF FIGURES vii LIST OF TABLES x LIST OF ACRONYMS xi CHAPTER 1. INTRODUCTION 1 1.1 Motivation 1 1.2 Research Objectives 2 1.3 Contributions 3 1.4 Dissertation Organization 4 CHAPTER 2. LITERATURE REVIEW 5 2.1 Image Feature Detection 5 2.1.1 Edge Detector 5 2.1.2 Corner Detectors 7 2.1.3 Issues for Image Features 8 2.2 LIDAR Feature Detection 9 2.2.1 Model-driven Strategy 9 2.2.2 Data-driven Strategy 10 2.2.3 Issues for LIDAR Features 12 2.3 Summary 13 CHAPTER 3. TOPOLOGICAL GRADIENT CONNECTION ANALYSIS FOR IMAGE FEATURE DETECTION 14 3.1 Image Smoothing 14 3.2 Gradient Computation 15 3.3 Topological Connection Analysis 19 3.4 Summary 22 CHAPTER 4. TOPOLOGICAL ELEVATION CONNECTION ANALYSIS FOR THREE-DIMENSIONAL LINE DETECTION 23 4.1 Pseudo-grid Generation 23 4.2 Structure Line Detection 24 4.3 Three Dimensional Line Formation 29 CHAPTER 5. DATASETS 31 5.1 Image Datasets 31 5.2 Airborne LIDAR Point Clouds 33 CHAPTER 6. RESULTS AND DISCUSSIONS 36 6.1 The Comparison for Image Processing 36 6.2 The Comparison for LIDAR Processing 44 6.2.1 Comparison with the Reference Lines 44 6.2.2 Comparison with Raw Points 47 CHAPTER 7. RELATED APPLICATIONS 49 7.1 Integration of Corners and Edges for Image Matching Using Aerial Images 49 7.1.1 The Background and Motivations 49 7.2.2 Feature-based Image Matching 51 7.2.2.1 Feature Detection 51 7.1.2.2 Image matching 52 7.1.3 Experimental Results 53 7.1.4 Summary 57 7.2 Feature-based Registration for Aerial Images and 3D Building Models 58 7.2.1 The Background and Motivations 58 7.2.2 Feature-based Registration using TGC 59 7.2.2.1 Pre-processing 60 7.2.2.2 Data Registration 61 7.2.2.3 Quality Assessment 63 7.2.3 Experimental results 63 7.2.4 Summary 66 7.3 Feature Analyses For Geo-database Maintenance Using Aerial Imagery and LIDAR Data 67 7.3.1 The Background and Motivations 67 7.3.2 Feature-based Change Detection 69 7.3.2.1 Feature Detection 69 7.3.2.2 Data Registration 70 7.3.2.3 Change Detection 70 7.3.3 Experimental Results 71 7.3.4 Summary 73 CHAPTER 8. CONCLUSIONS AND FUTURE WORKS 74 8.1 Conclusions 74 8.2 Limitations 76 8.3 Future Works 76 BIBLIOGRAPHIES 78 CURRICULUM VITAE 85

    Abdou, I.E. and Pratt, K., 1979. Quantitative design and evaluation of enhancement/ thresholding edge detectors. Proceedings of the IEEE, 67(5): 753-763.
    Ackermann, F., 1999. Airborne laser scanning - present status and future expectations. ISPRS Journal of Photogrammetry and Remote Sensing, 54 (2- 3): 64-67.
    Akca, D., 2010. Co-registration of surfaces by 3D least squares matching. Photogrammetric Engineering and Remote Sensing, 76(3): 307-318.
    Ancuti, C., Ancuti, C.O. and Bekaert, P., 2009. An efficient two steps algorithm for wide baseline image matching. Visual Computer, 25: 677–686.
    Arbelaez, P., Maire, M., Fowlkes, C. and Malik, J., 2011. Contour detection and hierarchical image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(59): 898-916.
    Awrangjeb, M., Ravanbakhsh, M. and Fraser, C.S., 2010. Automatic detection of residential buildings using LIDAR data and multispectral imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 65 (5): 457-467.
    Bao, P., Zhang, L. and Wu, X., 2005. Canny edge detection enhancement by scale multiplication. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(9): 1485-1490.
    Baltsavias, E., 1991. Multiphoto geometrically constrained matching. Ph.D. thesis, Institute of Geodesy and Photogrammetry, ETH Zurich, Switzerland, Mitteilungen 49, 221 pages.
    Boskovitz, V. and Guterman, H., 2002. An adaptive neuro-fuzzy system for automatic image segmentation and edge detection. IEEE Transactions on Fuzzy Systems, 10(2): 247-262.
    Bouziani, M., Goita, K. and He, D.C., 2010. Automatic change detection of buildings in urban environment from very high spatial resolution images using existing geodatabase and prior knowledge. ISPRS Journal of Photogrammetry and Remote Sensing, 65: 143-153.
    Brenner, C., 2000. Towards fully automatic generation of city models. International Archives of Photogrammetry and Remote Sensing, 33 (Part B3): 85-92.
    Brenner, C., 2005. Building reconstruction from images and laser scanning. International Journal of Applied Earth Observation and Geoinformation, 6(3–4): 187-198.
    Canny, J., 1986. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(6): 679-698.
    Chen, L.C., Teo, T.A., Kuo, C.Y. and Rau, J.Y., 2008. Shaping polyhedral buildings by the fusion of vector maps and Lidar point clouds. Photogrammetric Engineering and Remote Sensing, 74 (9): 1147-1157.
    Cha, J., Cofer, R.H. and Kozaitis, S.P., 2006. Extended Hough transform for linear feature detection. Pattern Recognition, 39: 1034-1043.
    Champion, N., Boldo, D., Pierrot-Deseilligny, M. and Stamon, G., 2010. 2D building change detection from high resolution satellite imagery: A two-step hierarchical method based on 3D invariant primitives. Pattern Recognition Letters, 31: 1138-1147.
    Cho, W., Jwa, Y.S., Chang, H.J. and Lee, S.H., 2004. Pseudo-grid based building extraction using airborne LIDAR data. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 35(B3): 378–383.
    Chen, L.C., Huang, C.Y. and Teo, T.A., 2012. Multi-type change detection of building models by integrating spatial and spectral information, International Journal of Remote Sensing, 33 (6): 1655-1681.
    Christmas, W.J., Kittler, J. and Petrou, M., 1995. Structural matching in computer vision using probabilistic relaxation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(8): 749-764.
    Demigny, D., 2002. On optimal linear filtering for edge detection. IEEE Transactions on Image Processing, 11(7): 728-737.
    Dunn, D. and Higgins, W.E., 1995. Optimal gabor filters for texture segmentation. IEEE Transactions on Image Processing, 4(7): 947-964.
    Du, P., Liu, S., Gamba, P., Tan, K. and Xia, J., 2012. Fusion of difference images for change detection over urban areas. IEEE Journal of Selected Topics In Applied Earth Observations And Remote Sensing, 5(4): 1076-1085.
    Filin, S. and Pfeifer, N., 2006. Segmentation of airborne laser scanning data using a slope adaptive neighborhood. ISPRS Journal of Photogrammetry and Remote Sensing, 60(2): 71-80.
    Förstner, W., 1986. A feature-based correspondence algorithm for image matching. International Archives of Photogrammetry and Remote Sensing, 26(3): 150-166.
    Gruen, A., 2012. Development and status of image matching in photogrammetry. The Photogrammetric Record, 27 (137): 36-57.
    Gülch, E., Müller, H. and Läbe, T., 1999. Integration of automatic processes into semiautomatic building extraction. International Archives of Photogrammetry and Remote Sensing, 32 (Part 3-2W5): 177-186.
    Habib, A.F., Cheng, R.W.T., Kim, E.M., Mitishita, E.A., Frayne, R. and Ronsky, J.L., 2006. Automatic surface matching for the registration of LIDAR data and MR imagery. ETRI Journal, 28: 162-174.
    Habib, A.F., Zhai, R. and Kim, C., 2010. Generation of complex polyhedral building models by integrating stereo-aerial imagery and LiDAR data. Photogrammetric Engineering and Remote Sensing, 76 (5): 609-623.
    Hardie, R.C. and Boncelet, C.G., 1995. Gradient-based edge detection using nonlinear edge enhancing prefilters. IEEE Transactions on Image Processing, 4(11): 1572-1577.
    Haris, K., Efstratiadis, S.N., Maglaveras, N. and Katsaggelos A.K., 1998. Hybrid image segmentation using watersheds and fast region merging. IEEE Transactions on Image Processing, 7(12): 1684-1699.
    Harris, C. and Stephens, M., 1988. A combined corner and edge detector. Proceedings of the 4th ALVEY Vision Conference, University of Manchester, England. 302 pages: 147-151.
    Heath, M.D., Sarkar, S., Sanocki, T. and Bowyer, K.W., 1997. A robust visual method for assessing the relative performance of edge-detection algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(12): 1338-1359.
    Heath, M.D., Sarkar, S., Sanocki, T. and Bowyer, K.W., 1998. Comparison of edge detectors: a methodology and initial study. Computer Vision and Image Understanding, 69(1): 38-54.
    Hsu, W.C., 1999. Building extraction from color aerial stereo photo pairs. Master degree dissertation, National Central University, Taiwan.
    Jiang, W., Lam, K.M. and Shen, T.Z., 2009. Efficient edge detection using simplified Gabor Wavelets. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 39(4): 1036-1047.
    Kim, K.H. and Shan, J., 2011. Building roof modeling from airborne laser scanning data based on level set approach. ISPRS Journal of Photogrammetry and Remote Sensing, 66(4): 484-497.
    Koc-San, D. and Turker, M., 2012. A model-based approach for automatic building database updating from high resolution space imagery. International Journal of Remote Sensing, 33 (13): 4193-4218.
    Konishi, S., Yuille, A.L., Coughlan J.M. and Zhu S.C., 2003. Statistical edge detection: learning and evaluating edge cues. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(1): 57-74.
    Knudsen, T. and Olsen, B.P., 2003. Automated change detection for updates of digital map databases. Photogrammetric Engineering and Remote Sensing, 69 (11): 1289-1296.
    Laligant, O. and Truchetet, F., 2010. A nonlinear derivative scheme applied to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(2): 242-257.
    Li, L.Y. and Chen, W.N., 1999. Corner detection and interpretation on planar curves using fuzzy reasoning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(11): 1204–1210.
    Liu, J., Li, D. and Tao, W., 2009. Matching rotated images in varying illumination conditions based on moment invariants. Optical Engineering, 48(1): 1-8.
    Liu, Y., 2009. Replicator dynamics in the iterative process for accurate range image matching. International Journal of Computer Vision, 83: 30–56.
    Lowe, D.G., 2004. Distinctive image features from scale invariant keypoints. International Journal of Computer Vision, 60(2): 91-110.
    Lo, C.Y. and Chen, L.C., 2012. Feature analyses for geodatabase maintenance using aerial imagery and LIDAR data. Proceedings of the 33nd Asian Conference on Remote Sensing, Nov. 26-30, Pattaya, Thailand, CD-ROM.
    Lo, C. Y. and Chen, L. C., 2013a. Topological gradient connection analysis for feature detection. The Photogrammetric Record, 28(141): 7-26.
    Lo, C.Y. and Chen, L.C., 2013b. Topological elevation connection analysis for 3D line detection from dense airborne LIDAR data. Journal of the Chinese Institute of Engineers (Accepted).
    Lo, C.Y. and Chen, L.C., 2013c. Integration of corners and edges for image matching using aerial images. Proceedings of the 34th Asian Conference on Remote Sensing, Oct. 20-24 Bali, Indonesia, CD-ROM.
    Lo, C.Y. and Chen, L.C., 2013d. Quality assessment for edge-based data registration using aerial imagery and 3D building models. International Symposium on Remote Sensing 2013, May 15-17, Makuhari Seminar House, Chiba, Japan, CD-ROM.
    Lu, S., Wang, Z. and Shen, J., 2003. Neuro-fuzzy synergism to the intelligent system for edge detection and enhancement. Pattern Recognition, 36(10): 2395-2409.
    Ma, W.Y. and Manjunath, B., 2000. Edgeflow: a technique for boundary detection and image segmentation. IEEE Transactions on Image Processing, 9(8): 1375-1388.
    Mallat, S. and Zhong, S., 1992. Characterization of signals from multiscale edges. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(7): 710-732.
    Maas, H. and Vosselman, G., 1999. Two algorithms for extracting building models from raw laser altimetry data. ISPRS Journal of Photogrammetry and Remote Sensing, 54 (2–3): 153-163.
    McIlhagga, W., 2011. The Canny edge detector revisited. International Journal of Computer Vision, 91: 251-261.
    Medina-Carnicer, R., Madrid-Cuevas, F.J., Muῆnoz-Salinas, R. and Carmona-Poyato, A., 2010. Solving the process of hysteresis without determining the optimal thresholds. Pattern Recognition, 43: 1224-1232.
    Medina-Carnicer, R., Munoz-Salinas, R., Yeguas-Bolivar, E. and Diaz-Mas, L., 2011. A novel method to look for the hysteresis thresholds for the Canny edge detector. Pattern Recognition, 44: 1201-1211.
    Meer, P. and Georgescu, B., 2001. Edge detection with embedded confidence. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(12): 1351-1365.
    Meng, X.L., Wang, L. and Currit, N., 2009. Morphology-based Building Detection from Airborne Lidar Data. Photogrammetric Engineering and Remote Sensing, 75 (4): 437-442.
    Metternicht, G., 1999. Change detection assessment using fuzzy sets and remotely sensed data: an application of topographic map revision. ISPRS Journal of Photogrammetry and Remote Sensing, 54: 221-233.
    Mokhtarian, F. and Suomela, R., 1998. Robust image corner detection through curvature scale space. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(12): 1376–1381.
    Otto, G.P. and Chau, T.K.W., 1989. A region-growing algorithm for matching of terrain images. Image Vision Computing, 7(2): 83-94.
    Pavlidis, T. and Liow, Y.T., 1990. Integrating region growing and edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(3): 225-233.
    Perona, P. and Malik, J., 1990. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7): 629-639.
    Prewitt, J.M.S., 1970. Object enhancement and extraction. In Picture Processing and Psychopictorics, (Eds. B. Lipkin and A. Rosenfeld). Academic Press, New York, USA. 526 pages: 75-149.
    Pu, S. and Vosselman, G., 2009. Knowledge based reconstruction of building models from terrestrial laser scanning data. ISPRS Journal of Photogrammetry and Remote Sensing, 64 (6): 575-584.
    Rakesh, R.R., Chaudhuri, P. and Murthy, C., 2004. Thresholding in edge detection: a statistical approach. IEEE Transactions on Image Processing, 13(7): 927-936.
    Rau, J.Y. and Lin, B.C., 2011. Automatic roof model reconstruction from ALS data and 2D ground plans based on side projection and the TMR algorithm. ISPRS Journal of Photogrammetry and Remote Sensing, 66: S13-S27.
    Rosten, E. and Drummond, T. W., 2006. Machine learning for high-speed corner detection. The 9th European Conference on Computer Vision, ECCV 2006, Lecture Notes in Computer Vision, 3951: 430-443.
    Rosten, E., Porter, R. and Drummond, T., 2010. Faster and Better: A machine learning approach to corner detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(1): 105-119.
    Rottensteiner, F., 2003. Automatic generation of high-quality building models from lidar data. IEEE Computer Graphics and Applications, 23 (6): 42-50.
    Rottensteiner, F., Trinder, J., Clode, S. and Kublik, K., 2007. Building detection by fusion of airborne laser scanner data and multi-spectral images: Performance evaluation and sensitivity analysis. ISPRS Journal of Photogrammetry and Remote Sensing, 62(2): 135-149.
    Sampath, A. and Shan, J., 2010. Segmentation and reconstruction of polyhedral building roofs from aerial lidar point clouds. IEEE Transactions on Geoscience and Remote Sensing, 48 (3): 1554-1567.
    Shi, W. and Shaker, A., 2006. The line-based transformation model (LBTM) for image-to-image registration of high-resolution satellite image data. International Journal of Remote Sensing, 27(14): 3001–3012.
    Smith, S.M. and Brady, J.M., 1997. SUSAN—A new approach to low level image processing. International Journal of Computer Vision, 23(1): 45-78.
    Sobel, I., 1990. An isotropic 3x3 image gradient operator. In Machine Vision for Three-Dimensional Scenes (Ed. H. Freeman). Academic Press, Boston, USA.419 pages: 376-379.
    Sohn, G. and Dowman, I., 2007. Data fusion of high-resolution satellite imagery and LiDAR data for automatic building extraction. ISPRS Journal of Photogrammetry and Remote Sensing, 62 (1): 43-63.
    Sun, G.Y., Liu, Q.H., Liu, Q.A., Ji, C.Y. and Li, X.W., 2007. A novel approach for edge detection based on the theory of universal gravity. Pattern Recognition, 40: 2766-2775.
    Tanaka, Y., Hasegawa, M., Kato, S., Ikehara, M. and Nguyen, T.Q., 2010. Adaptive directional Wavelet transform based on directional prefiltering. IEEE Transactions on Image Processing, 19(4): 934-945.
    Vosselman, G., 1999. Building reconstruction using planar faces in very high density height data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 32 (Part 3/2W5): 87-92.
    Vosselman, G. and Dijkman, S., 2001. 3D building model reconstruction from point clouds and ground plans. International Archives of Photogrammetry. Remote Sensing and Spatial Information Sciences, 34 (Part 3/W4): 37-43.
    Wang, M. and Tseng, Y. H., 2011. Incremental segmentation of lidar point clouds with an octree-structured voxel space. The Photogrammetric Record, 26(133): 32-57.
    Xu, C. and Prince, J.L., 1998. Snakes, shapes, and gradient vector flow. IEEE Transactions on Image Processing, 7(3): 359-369.
    Yi, S., Labate, D., Easley, G. R. and Krim, H., 2009. A Shearlet approach to edge analysis and detection. IEEE Transactions on Image Processing, 18(5): 929-941.
    Zagrouba, E., Barhoumi, W. and Amri, S., 2009. An efficient image-mosaicing method based on multifeature matching. Machine Vision and Applications, 20: 139–162.
    Zhang, K., Yan, J. and Chen, S. C., 2006. Automatic construction of building footprints from airborne LIDAR data. IEEE Transactions on Geoscience and Remote Sensing, 44(9): 2523-2533.
    Zhang, L. and Gruen, A., 2006. Multi-image matching for DSM generation from IKONOS imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 60(3): 195-211.
    Zhang, Z., Zhang, Y., Zhang, J. and Zhang, H., 2008. Photogrammetric modeling of linear features with generalized point photogrammetry. Photogrammetric Engineering and Remote Sensing, 74(9): 1119–1127.

    QR CODE
    :::