跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張簡敬軒
Ching-Hsuan Chang
論文名稱: 白金量子點光電化學太陽能電池之特性研究
Characteristics of Photoelectrochemical solar cell with Platinum Quantum dot
指導教授: 張正陽
Jeng-Yang Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學與工程研究所
Graduate Institute of Materials Science & Engineering
畢業學年度: 96
語文別: 中文
論文頁數: 79
中文關鍵詞: 太陽能電池量子點光電化學白金
外文關鍵詞: Quantum dot, solar cell, Platinum
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統光電化學太陽能電池採用塗佈含白金溶液或以電化學沉積白金量子點在n型單晶矽,可以產生開路光電壓達0.65 伏特和光電轉換效率亦達14.5 %,影響此光電化學電池的重要機制為白金量子點大小與密度分佈。
    本論文經由下述實驗,成功採用物理氣相沉積方法製備出利用白金量子點的光電化學太陽能電池,其光電轉換效率達4%,開路電壓達0.35伏特。首先對光電化學太陽能電池元件中的ITO玻璃,上面的白金薄膜厚度做探討,以得到最大的入射光與光電轉換效率。再分別對蒸鍍與濺鍍系統所製成的薄膜均勻性了解,可以得知電子槍蒸鍍系統所得到的薄膜較為鬆散,利於形成白金量子點。故使用蒸鍍系統鍍製不同薄膜厚度並搭配不同溫度的熱處理調整,可以使得白金量子點大小介於5~100nm,並可以發現不同的白金量子點大小對轉換效率會有不同影響,而且薄膜厚度越薄,內聚形成量子點所需溫度越低,光電轉換效率極值出現溫度越低,但以此製程製備出的光電轉換效率有極限值4%。再配合半導體微影技術來定義圖形以調控白金量子點密度在1011~109(白金量子點大小在10奈米以下的個數)/平方公分。透過上述的微影製程,在白金量子點大小為10奈米以下,平均密度在每平方公分具有1.43 x 1015白金量子點個數,可以得到光電轉換效率2%,開路電壓在0.35伏特。


    Platinum solution coating or electrochemical deposition platinum quantum dots in n-type silicon is employed on traditional Photoelectrochemical solar cell, which make open-voltage of 0.65 volts and photoelectric conversion efficiency of 14.5 percent achieved. The impacts on the important mechanisms of the Photoelectrochemical cell depend on platinum quantum dot size and density distribution.
    In this thesis, the platinum quantum dot of utilizing physical vapor deposition method on Photoelectrochemical solar cells is adopted and makes photoelectric conversion efficiency of 4%, open circuit voltage of 0.35 volts. First, the thickness of platinum film on the ITO glass of solar cells is considered to reach the maximum of incident intensity and photoelectric conversion efficiency. The uniformity of platinum thin film made of evaporation and sputtering system is analyzed, respectively. With electron gun evaporation system, it would be beneficial to form quantum dots from platinum owing to its loose composition. Therefore, with the modulation of platinum film thickness in evaporation system and annealing temperature, the platinum quantum dot size can be controlled between 5 ~ 100 nm. It can be found that size of platinum quantum dot plays an important role on the conversion efficiency. And the thinner thickness of film is, the lower temperature would be required at forming quantum dot where the maximum of conversion efficiency occurs. There exists the maximum photoelectric conversion efficiency with 4% under this fabrication process. With the pattern definition by semiconductor lithography technology, the platinum quantum dot density can be controlled in 109 ~1011 (the amount of Platinum quantum dot with the size below 10 nm) / cm2. By the lithography process as mentioned above, the photoelectric conversion efficiency of 2% and the open circuit voltage of 0.35 volts can be achieved with the platinum quantum dot size below 10 nm and the platinum quantum dot density of 1.43 x 1015 /cm2 at average.

    中文摘要 i 英文摘要 ii 致 謝 iii 目 錄 iv 圖目錄 vii 表目錄 xi 第一章 序論 1 1-1 前言 1 1-2 研究動機 2 1-3 文獻回顧 4 1-4 論文簡介 5 第二章 光電化學太陽能電池之原理 9 2-1 光電化學太陽能電池元件物理 9 2-2 太陽能電池基本特性 18 2-2-1 太陽能電池之等效電路模型 18 2-2-2 太陽能電池測試標準條件 20 2-2-3 太陽能電池之特性參數 22 第三章 實驗方法、步驟與實驗設備 25 3-1 實驗方法 25 3-2 實驗步驟 26 3-3 實驗製程設備 30 3-3-1 電子槍蒸鍍系統 30 3-3-2 濺鍍系統 30 3-3-3 快速熱退火爐 32 3-4 實驗分析設備與 33 3-4-1 掃描式電子顯微鏡(SEM) 33 3-4-2 太陽光模擬器 33 第四章 實驗結果與討論 36 4-1 ITO玻璃上白金薄膜的厚度調制 36 4-2 蒸鍍與濺鍍白金薄膜均勻度對量子點的影響 38 4-3 蒸鍍白金薄膜厚度與形成白金量子點溫度的關係 43 4-4 半導體微影製程控制白金量子點密度 49 4-4-1 半導體微影製程控制白金量子點密度實驗之結果 49 4-4-2 半導體微影製程控制白金量子點密度之討論 50 第五章 結論與未來工作 58 5-1 結論 58 5-2 未來工作 59 參 考 文 獻 61

    [1] 沈輝 等,太陽能光電技術,五南圖書出版公司,台北,民國九十七年
    [2] 林明獻,太陽電池技術入門,全華圖書出版公司,台北,民國九十七年
    [3] 取自www.insideb.de
    [4] 蘇睦庭,「共軛高分子聚–3–辛基 塞吩摻雜碳奈米雜質之光伏電池研究」,中原大學,碩士論文,民國九十四年。
    [5] 莊嘉珅,太陽能工程—太陽電池篇,全華科技圖書股份有限公司,台北,民國八十六年。
    [6] H. Tsubomura, H. Kobayashi, “Solar-cell,” Critical Reviews in Solid State and Materials Sciences, Vol. 18, pp. 261, 1993
    [7] A.J. Nozik, R. Memming, “Physical chemistry of semiconductor-liquid interfaces,” Journal of Physical Chemistry, Vol. 100, pp. 13061, 1996.
    [8] B. O’Regan, M. Gr?tzel, “Alow-cost, high-efficiency solar-cell based on dye-sensitized colloidal TIO2 films,” Nature, Vol. 353, pp. 737, 1991.
    [9] A. Fujishima, K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature ,Vol. 238, pp. 37, 1972.
    [10] R.C. Kainthla, B. Zelenay, J.O’M. Bockris, “Significant efficiency incrcrease in self-driven photoelectrochemical cell for water photoelectrolysis,” Journal of The Electrochemical Society, Vol. 134, pp. 841, 1987.
    [11] Y. Sakai, S. Sugahara, M. Matsumura, Y. Nakato, H. Tsubomura, “Photoelectrochemical water splitting by splitting by tandem type and heterojunction amorphous-silicon electrodes,” Canadian Journal of Chemistry-revue Canadienne de Chimie, Vol. 66, pp. 1853,1998.
    [12] R. Hinogami, Y. Nakamura, S. Yae, Y. Nakato, “An approach to ideal semiconductor electrodes for efficient photoelectrochemical reduction of carbon dioxide by modification with small metal particles,” Journal of Physical Chemistry, B 102, pp. 974, 1998.
    [13] Y. Nakato, J.G. Jia, M. Ishida, K. Morisawa, M. Fujitani, R.Hinogami, S. Yae, “Efficient solar-to-chemical conversion by one chip of n-type silicon with surface asymmetry,” Electrochemical and Solid-State Letters, Vol. 1, pp. 71, 1998.
    [14] Y. Nakato, H. Tsubomura, “Silicon photoelectrodes modified with ultrafine metal islands,” Electrochim. Acta, Vol. 37, pp. 897, 1992.
    [15] Y. Nakato, K. Ueda, H. Yano, H. Tsubomura, “Effect of microscopic discontinuity of metal overlayers on the photovoltages in metal coated semiconductor-liquid junction photoelectrochemical cell for efficient solar-energy conversion,” Journal of Physical Chemistry, Vol. 92, pp. 2316, 1988.
    [16] K. Ueda, Y. Nakato, N. Suzuki, H. Tsubomura, “Silicon electrodes coated with extremely small platinum islands for efficient solar-energy conversion,” Journal of The Electrochemical Society, Vol 136, pp. 2280, 1989.
    [17] S. Yae, I. Nakanishi, Y. Nakato, N. Toshima, H. Mori, “Preparation of a langmuir-blodgett layer of ultrafine platinum particles and its application to n-Si for efficient photoelectrochemical solar-cells,” Journal of The Electrochemical Society, Vol. 141, pp. 3077, 1994.
    [18] S. Yae, R. Tsuda, T. Kai, K. Kikuchi, M. Uetsuji, T. Fujii, M.Fujitani, Y. Nakato, “Efficient photoelectrochemical solar-cells equipped with colloidal platinum particles,” Journal of The Electrochemical Society, Vol. 141, pp. 3090, 1994.
    [19] K. Kawakami, T. Fujii, S. Yae, Y. Nakato, “Improvement in photovoltage and stability of porous n-Si electrodes coated with platinum by regulation of the thickness of nanoporous layers,” Journal of Physical Chemistry, B101, pp. 4508, 1997.
    [20] S. Yae, M. Fujitani, I. Nakanishi, M. Uetsuji, R. Tsuda, Y.Nakato, “Minority carrier controlled PEC solar cells, using n-Si electrodes modified with LB layers of ultrafine Pt particles,” Solar Energy Materials and Solar Cells, Vol. 43, pp. 311, 1996.
    [21] K. Ueda, Y. Nakato, N. Suzuki, H. Tsubomura, “Silicon Electrodes Coated with Extremely Small Platinum Islands for Efficient Solar Energy Conversion,” Journal of The Electrochemical Society, Vol. 136, No.8, August 1989.
    [22] S. Yae, Tsuda, T. Kai, K. Kikuchi, M. Uetsuji, T. Fujii, M. Fujitani, Y. Nakato, “Efficient Photoelectrochemical Solar Cells Equipped with an n-Si Electrode Modified with Colloidal Platinum Particles,” Journal of The Electrochemical Society, Vol. 141, No. 11, November 1994.
    [23] S. Yae, M. Kitagaki, T. Hagihara, Y. Miyoshi, H. Matsuda, B. A. Parkinson, Y. Nakato, “Electrochemical deposition of fine Pt particles on n-Si electrodes for efficient photoelectrochemical solar cells,” Electrochimica Acta, Vol. 47, pp. 345, 2001.
    [24] S. Yae, Y. Kawamoto, H. Tanaka, N. Fukumuro, H. Matsuda, “Formation of porous silicon by metal particle enhanced chemical etching in HF solution and its application for efficient solar cells,” Electrochemistry Communications, Vol. 5, pp. 632, 2003.
    [25] K. Nakato, S. Takabayashi, A. Imanishi, K. Murakoshi, Y. Nakato, “Stabilization of n-Si electrodes by surface alkylation and metal nano-dot coating for use in efficient photoelectrochemical solar cell,” Solar Energy Material and Solar Cells, Vol. 83, pp. 323, 2004.
    [26] Y. L. Kawamura, T. Sakka, Y. H. Ogata, “Phtoassister control of Pt electrodeposition on p-type Si,” Journal of The Electrochemical Society, Vol. 152, pp. 10, C701, 2005.
    [27] S. Yae, T. Kobayashi, M. Abe, N. Nasu, N. Fukumuro, S. Ogawa, N. Yoshida, S. Nonomura, Y. Nakato, H. Matsuda, “Solar to chemical coversion using metal nanoparticle modified microcrystalline silicon thin film photoelectrode,” Solar Energy Material and Solar Cells,Vol. 91, pp. 224 2007.
    [28] 施敏,半導體元件物理與製作技術,國立交通大學出版社,新竹,民國九十一年
    [29] 張勁燕,電子材料,五南圖書出版公司,台北,民國九十三年
    [30] 陳力俊 等,材料電子顯微鏡學,全華圖書出版公司,台北,民國八十三年

    QR CODE
    :::