| 研究生: |
王祥洲 Hsiang-Chao Wang |
|---|---|
| 論文名稱: |
廢水處理系統光學監測系統之發展-非接觸式廢水流量與色度監測技術之建立 Development of Wastewater Treatment System Optical monitoring system - Establishment of Non-contact Monitoring Technology for Flow and Color of Wastewater |
| 指導教授: |
廖述良
Shu-Liang Liaw |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 色度 、非接觸 、光學影像量測 、流量 、廢水處理系統 |
| 外文關鍵詞: | optical image, non-contact, true color values, flow |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
廢水處理系統自動監控系統已成為必然之趨勢與需求,其各監測項目中,以流量變化即時監測最具關鍵性。由於現有流量監測設備多採接觸式量測原理,容易受到廢水的污染與干擾,而造成維護與資料品質等問題。所以本研究希望藉由光學影像監測技術的非接觸與非破壞特性,解決傳統接觸式感測器流體特性的干擾問題。
研究整合CCD光學影像量測技術與量水槽設備,以CCD攝影機連續擷取量水槽之影像,利用影像測邊原理分析槽內水平面位置,即時監測槽內液位改變及相對之流量變化;同時藉由分析影像之水體RGB值,即時監測廢水中真色色度值變化,探討此影像量測技術於流量及色度自動監測之可行性。
結果顯示數位影像法量測水位解析度可達0.02 cm 以下,且量測精密度小於0.008 cm ,即非接觸式數位影像法可精確量測水位變化,排除接觸式流量量測的問題,提昇流量量測的準確度;同時由影像分析自由水面之顏色值,可得知水中真色色度值變化情形。利用光學監測技術可現場即時監測水量水質狀況,完全避免樣品在採集與傳輸過程中可能引入的誤差因子,可有效滿足廢水處理系統或其他類似系統之即時流量量測需求。
The flow monitoring equipment of the wastewater treatment system mostly adopt the contact-type measuring principle, so it must direct against the difference of characteristics of fluid , and choose the suitable flow meter kind in order to avoid the error of detection or the damage of the monitoring instrument. This research hopes to solve the interference problem of the traditional contact-type detecting device with the non-contact and non-destruct image monitoring technology. Develop non-contact-type technology and system, assist the process of real-time flow monitor of wastewater treatment system, and promote the reliability of the monitoring data.
This research combines the CCD optical image measuring technology and triangular notch weir, pick image of side of tank in succession by CCD camera, and analyze the position of water-level with image edge-detecting principle, monitor Head change and relative flow change immediately. At the same time, get Variation tendency of ADMI true color values of water by analyzing the water body RGB value of the image. Examine the feasibility of image measuring technology for automatic monitor of water flow and quality.
The result shows that the resolution of image water-level measurement is less than 0.02 cm, and the precision is less than 0.008 cm, so non-contact digital image technology can measure Head change precisely, get rid of the question that the contact-type flow measurement, and promote the accuracy of the flow measurement. At the same time, Image measuring of free water surface can also get the variation tendency of ADMI true color values. The optical monitoring technology can provide water on-line and real-time monitor, and totally avoid the error factor that samples may be introduced in the course of gathering and transmitting.
1. Byrne, Liam; Barker, John; Pennarun-Thomas, Digital imaging as a detector for generic analytical measurements, Trends in Analytical Chemistry Volume: 19, Issue: 8, August, pp. 517-522, 2000.
2. Takagi, Yoichi; Tsujikawa, Akio; Takato, Development of a noncontact liquid level measuring system using image processing, Water Science and Technology Volume: 37, Issue: 12, pp. 381-387, 1998.
3. Fecht, Ingo; Johnson, Mark, Non-contact scattering-independent water absorption measurement using a falling stream and integrating sphere, Measurement Science and Technology Volume: 10, pp. 612-618, 1999.
4. Johnson, Mark, Remote turbidity measurement with a laser reflectometer, Water Science and Technology Volume: 37, Issue: 12, pp. 255-261, 1998.
5. Holst, Gerald C., CCD arrays, cameras, and displays, second edition, JCD Publishing, 1998.
6. Plataniotis, K.N. and Venetsanopoulos, A.N., Color Image Processing and Application, Springer, 2000.
7. Kang, Henry R., Color technology for electronic image device, SPIE, 1997.
8. Yukio, O. and Nozomu, S., Color Reproduction Characteristics of Liquid Crystal Panels and New Compensation for Them, SHARP Technical Journal, 2002.
9. Rafael C. Gonzalez; Richard E. Woods 原著,吳成柯、程湘君、戴善榮、雲立實譯,數位影像處理 (Digital Image Processing) ,儒林圖書有限公司,1996。
10. 大田 登 原著,陳鴻興、陳君彦 編譯,基礎色彩再現工程,全華科技圖書,2003。
11. 李威毅,非接觸明渠流量儀的設計研究,碩士論文,國立中央大學環境工程研究所,1999。
12. 余松煜、周源華、吳時光,數位影像處理,儒林圖書有限公司,1993。
13. 林宸生、陳德請,近代光電工程導論,全華科技圖書公司,2000。
14. 徐俊豪,強健之次像素邊緣檢測新技術,碩士論文,國立中興大學機械工程學系,2000。
15. 曹永偉,感測器技術入門,全華科技圖書,2001。
16. 陳廷標、夏良正,數位影像處理,儒林圖書公司,1993。
17. 陳俊萍,微電腦非接觸流量計設計研究,碩士論文,國立中央大學環境工程研究所,1992。
18. 黃秀蓮、張大年、何燧源,環境分析與監測,科技圖書,2002。
19. 張漢龍,CCD Camera 量測系統,碩士論文,國立中央大學光電科學研究所,2001。
20. 鄭國裕,電腦影像處理,藝風堂出版社,1996。
21. 鄭志祥,影像次像素應用在米粒檢測之研究,碩士論文,國立中興大學機械工程學系,2002。
22. 雷一弘,應用數位影像技術於廢水真色色度監測之研究,碩士論文,國立中央大學環境工程研究所,2000。
23. 鄭振東譯,流量計的正確使用方法,中國生產力中心叢書,1992。
24. 謝振榆、傅毓芬,影像處理,全威圖書,1997。
25. 鍾國亮,影像處理與電腦視覺,東華書局,2002。
26. 環境保護署,環境檢測方法-水量測定方法。
27. 環境保護署,水中真色色度檢測方法-ADMI法。
28. 台禹監測科技股份有限公司,TW-39Q堰槽式流量計技術手冊。
29. 中國技術服務社,堰與峽槽式流量計,國產污染防治設備資料庫。
30. 經濟部水利署,量水設備技術規範草案(910128),水權法規。