| 研究生: |
鍾穎昌 Ying-Chang Chung |
|---|---|
| 論文名稱: |
以螢光訊號量測單晶矽太陽能電池物理參數之空間分布 Spatial distribution measurement of physical parameters for crystalline silicon solar cells using photoluminescence signal |
| 指導教授: |
陳昇暉
Sheng-Hui Chen 鍾德元 Te-Yuan Chung |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 照明與顯示科技研究所 Graduate Institute of Lighting and Display Science |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 特徵串聯電阻 、額外載子生命週期 、螢光量測 、擴散長度 |
| 外文關鍵詞: | photoluminescence measurement, excess carrier lifetime, specific series resistance, diffusion length |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文使用光激發螢光影像技術,量測載子生命週期、擴散長度和特徵
串聯電阻。短路狀態時,單晶矽太陽能電池會因不同光強造成不同的螢光、
光電壓與光電流,此時便可利用短路螢光模型計算出載子生命週期影像、
光電壓影像與光電流影像,而擴散長度與載子生命週期有關,由此便可得
到擴散長度影像,最後載子生命週期也可推算出j-V 曲線,再藉由j-V 曲
線取其斜率便可計算出特徵串聯電阻影像。而載子生命週期影像帄均值約
為2.56*10^-5 sec,誤差百分比帄均則約為0.69 %;特徵串聯電阻影像帄均
值約為1.42 Ω*cm^2,誤差百分比帄均則約為0.35 %。為了驗證此量測法的
正確性,分別地使用入射光強度為0.82 W/cm^2與0.67 W/cm^2得到各別的
載子生命週期與特徵串聯電阻影像,將載子生命週期影像相除的結果帄均
值為1.05,其標準差為0.14;特徵串聯電阻影像相除的結果帄均值為1.02 ,
其標準差為0.07,所以由標準差可知空間中的每個像素是與入射光無關的,
因此證明了這量測方法的正確性。接著再藉由入射光強度為0.82 W/cm^2 的
載子生命週期影像計算擴散長度影像,而擴散長度影像又分為n 型半導體
的電子與電洞擴散長度影像、p 型半導體的電子與電洞擴散長度影像,其帄
均值各別為66 μm、92 μm、289 μm、165 μm。
The article uses photoluminescence imaging technology to measure excess
carrier lifetime, diffusion length and specific series resistance. Crystalline silicon
solar cells has different photoluminescence, photovoltage and photocurrent
because of different illumination result in the short-circuit state, we can use PL
module in the short-circuit to calculate excess carrier lifetime imaging,
photovoltage imaging and photocurrent imaging. The relationship between
excess carrier lifetime and diffusion length, so we can obtain diffusion length
imaging by excess carrier lifetime imaging. Finally, excess carrier lifetime can
calculate the j-v curve, so we can obtain specific series resistance by the slope of
j-v curve. Excess carrier lifetime imaging average is about 2.56*10^-5 sec ,
percentage error average is about 0.69 %, specific series resistance imaging
average is about1.42 Ω*cm^2 , percentage error average is about0.35 %. In order
to verify the correctness of this measurement method, we choose two
illumination intensity at 0.82 W/cm^2 and 0.67 W/cm^2 , and then we obtain
two excess carrier lifetime imaging and two specific series resistance imaging.
We divide a excess carrier lifetime imaging by another excess carrier lifetime
imaging, and specific series resistance imaging is the same. Average value of the
results are about 1.05±0.14 and 1.02±0.07, we can know that each pixel is
independent of illumination intensity by standard deviations, so we verify the
correctness of this measurement method. On the illumination intensity is
0.82 W/cm^2 ,we use excess carrier lifetime imaging to calculate diffusion
length imaging, the diffusion length imaging is divided into electron and hole
iii
diffusion length imaging of the n-type semiconductor, electron and hole
diffusion length imaging of the p-type semiconductor, average value of the
results are 66 μm,92 μm,289 μm,165 μm.
[1]
WIKIPEDIA, "http://en.wikipedia.org/wiki/File:Global_Temperature_Anomaly_1880-2010_(Fig.A).gif"
[2]
Taiwan Solar Thermal Energy Association, "http://www.taiwansolar.org.tw/c3_3.php"
[3]
WIKIPEDIA, "http://zh.wikipedia.org/wiki/%E4%BA%AC%E9%83%BD%E8%AE%AE%E5%AE%9A%E4%B9%A6#cite_note-2 "
[4]
WIKIPEDIA, "http://en.wikipedia.org/wiki/2011_T%C5%8Dhoku_earthquake_and_tsunami"
[5]
Reference Splar Spectral Irradiance, "http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173/ASTMG173.html"
[6]
顧鴻壽, "Introduction Solar Cell Devices", 全威圖書有限公司, 2008.
[7]
蔡進譯, "超高效率太陽能電池-從愛因斯坦的光電效應談起", 物理雙月刊, 廿七, 五, 702-719, 2005.
[8]
M. Bail, J. Kentsch, R. Brendel and M. Schulz, ''Lifetime mapping of Si Wafers by an Infrared Camera'', IBM Journal of Research and Development, 9, 99-103, 2000.
[9]
J. Isenberg, S. Riepe, S. W. Glunz and W. Warta, ''Imaging method
60
for laterally resolved measurement of minority carrier densities and lifetimes: Measurement principle and first applications'', Applied Physics Letters, 93, 7, 4268-4275, 2003.
[10]
V. J. Bruce, ''Energy resolved emission microscopy'', IBM Journal of Research and Development, 3, 178-183, 1993.
[11]
A. G. Chynoweth and K. G. McKay, ''Photon Emission from Avalanche Breakdown in Silicon'', Physical Review Letters, 102, 2, 356-376, 1956.
[12]
M. D. Abbott, J. E. Cotter, F. W. Chen, T. Trupke, R. A. Bardos and K. C. Fisher, ''Application of photoluminescence characterization to the development and manufacturing of high-efficiency silicon solar cells'', Applied Physics Letters, 100, 11, 2006.
[13]
N. Khurana and C-L Chiang, ''Analysis of Product Hot Electron Problems by Gated Emission Microscop'', IBM Journal of Research and Development, 4, 189-194, 1986.
[14]
T. Trupke, E. Daub and P. Wurfel, ''Absorptivity of silicon solar cells obtained from luminescence'', Solar Energy Materials and Solar Cells, 53, 103-114, 1998.
[15]
T. Fuyuki, H. Kondo, T. Yamazaki, Y. Takahashi and Y. Uraoka, ''Photographic surveying of minority carrier diffusion length in polycrystalline silicon solar cells by electroluminescence'', Applied Physics Letters, 86, 2005.
[16]
A. Perez-Rodriguez, A. Cornet, J. R. Morante, J. Jimenez, P. L. F. Hemment and K. P. Homewood, ''Raman scattering and photoluminescence analysis of silicon on insulator structures obtained by single and multiple oxygen implants'', Applied Physics Letters, 70, 3, 1678-1683, 1991.
61
[17]
E. Daub, and P. Wurfel, ''Ultralow Values of the Absorption-Coefficient of Si Obtained from Luminescence'', Physical Review Letters, 74, 6, 1020-1023, 1995.
[18]
Y. Koshka, S. Ostapenko, L. Jastrzebski, J. Cao and J. P. Kalejs, ''Room-temperature luminescence diagnostics in polycrystalline silicon'', Optical Engineering, 3215, 10, 41, 1997.
[19]
I. Tarasov, S. Ostapenko, K. Nakayashiki and A. Rohatgi, ''Defect passivation in multicrystalline silicon for solar cells'', Applied Physics Letters, 85, 19, 4346-4348, 2004.
[20]
S. Ostapenko, I. Tarasov, J. P. Kalejs, C. Haessler and E-U Reisner, ''Defect monitoring using scanning photoluminescence spectroscopy in multicrystalline silicon wafers'', Semiconductor Science and Technology, 15, 8, 840-848, 2000.
[21]
I. Tarasov, S. Ostapenko, V. Feifer, S. McHugo, S. V. Koveshnikov, J. Weber, C. Haessler and E-U Reisner, ''Defect diagnostics using scanning photoluminescence in multicrystalline silicon'', Physica B: Condensed Matter, 273-274, 549-552, 1999.
[22]
L. Raniero, N. Martins, P. Canhola, S. Zhang, S. Pereira, I. Ferreira, E. Fortunato and R. Martins, ''Influence of the layer thickness and hydrogen dilution on electrical properties of large area amorphous silicon p-i-n solar cell'', Solar Energy Materials and Solar Cells, 87, 1-4, 349-355, 2005.
[23]
R. A. Bardos, T. Trupke, M. C. Schubert and T. Roth, ''Trapping artifacts in quasi-steady-state photoluminescence and photoconductance lifetime measurements on silicon wafers'', Applied Physics Letters, 88, 5, 2006.
62
[24]
T. Trupke, J. Nyhus and J. Haunschild, " Luminescence imaging for inline characterisation in silicon photovoltaics", Physica Status Solidi (RRL), 5, 4, 131-137, 2011.
[25]
S. O. Kasap, "Optoelectronics and Photonics:Principles and Practices", Prentice Hall, U.S.A, 2001.
[26]
S. Herlufsen, J. Schmidt, D. Hinken, K. Bothe and R. Brendel, "Photoconductance-calibrated photoluminescence lifetime imaging of crystalline silicon", Physica Status Solidi (RRL), 2, 6, 254-247, 2008.
[27] Y. P. Varshni, "Temperature dependence of the energy gap in semiconductors", Physica Status Solidi (RRL), 34, 1, 149-154, 1967.
[28]
G. Bastard, "Optical Studies of Gaas Quantum Wells", Luminescence, 40, 1, 33-36, 1988.
[29]
E. F. Schubert, "Light-Emitting Diodes", Cambridge University, New York, 2006.
[30]
J. I. Pankove, "OPTICAL PROCESSES INSEMICONDUCTORS", Dover, New York, 1971.
[31]
M. A. Green, and M. J. Keevers, "Optical properties of intrinsic silicon at 300 K", Progress in Photovoltaics: Research and Applications, 3, 3, 189-192, 1995.
[32]
PVCDROM, "http://www.pveducation.org/pvcdrom/pn-junction/generation-rate"
[33]
B. G. Streetman and S. K. Banerjee, "Solid State Electronic Devices", 吳孟奇、洪勝富、連振炘和龔正, 第六版, "半導體
63
元件", 台灣培生教育出版股份有限公司, 台北市, 2007.
[34]
P. Würfel, T. Trupke, T. Puzzer, E. Schäffer, W. Warta and S. W. Glunz, "Diffusion lengths of silicon solar cells from luminescence images", Applied Physics Letters, 101, 12, 2007.
[35]
D. A. Neamen, "An Introduction to Semiconductor Devices", 陳進祥, 初版, "半導體元件概論", 美商麥格羅・希爾國際股份有限公司台灣分公司, 台北市, 2007.
[36]
D. M. Caughey and R. E. Thomas, "Carrier mobilities in silicon empirically related to doping and field", IBM Journal of Research and Development, 55, 12, 2192-2193, 1967
[37]
J. Xue, S. Uchida, B.P. Rand and S.R. Forrest, "Organic Small Molecule Solar Cells with a Homogenously Mixed Copper Phthalocyanine:C60 Active Layer", Applied Physics Letters, 84, 2004.
[38]
維基百科, "http://zh.wikipedia.org/wiki/File:Ganzhi001.jpg"
[39]
Module, "http://math.fullerton.edu/mathews/n2003/newtonsystemmod.html"