| 研究生: |
林偉聖 Wei-sheng Lin |
|---|---|
| 論文名稱: |
具氮化鋁鎵/氮化鎵蕭基二極體之氮化銦鎵交流發光二極體 InGaN-Based Alternating Current Light-Emitting Diodes with AlGaN/GaN Schottky Barrier Diodes |
| 指導教授: |
綦振瀛
Jen-Inn Chyi |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 蕭基二極體 、交流發光二極體 |
| 外文關鍵詞: | Schottky Barrier Diodes, Alternating Current Light-Emitting Diodes |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要在探討如何將氮化鋁鎵/氮化鎵蕭基二極體積體化整合於氮化銦鎵交流發光二極體晶片上。
我們嘗試兩種在垂直結構上整合蕭基二極體與發光二極體之方法: (1) AlGaN/GaN蕭基二極體結構再成長於InGaN/GaN發光二極體結構上,(2) InGaN/GaN發光二極體結構再成長於AlGaN/GaN蕭基二極體結構上。但因為兩種方法皆面臨到蝕刻精準不易控制的問題,因此我們改用了選擇性區域再成長之方法,製作交流發光二極體之整合元件。其中我們利用具有AlGaN/AlN多層堆疊緩衝層之AlGaN/GaN蕭基二極體元件,達成順偏電流20 mA時操作電壓為2.75 V,與逆偏-200 V時漏電流大小為75 μA等優良特性,並藉由黃光微影製程方式成功將AlGaN/GaN蕭基二極體與InGaN/GaN發光二極體元件積體化於同一交流發光二極體晶片上。而交流發光二極體之發光面積約為晶片面積的88.4 %,其蕭基二極體僅占整體交流發光二極體面積之3.3 %。與傳統僅由LED所組成之交流發光二極體的特性做比較,在同樣直流偏壓130 V下,新型結合蕭基二極體之交流發光二極體提升了整體發光面積約47 %,而發光強度提升約28 %。
In this study, we investigated the detailed mechanisms on fabricating InGaN-based Alternating Current Light-emitting diodes (AC-LEDs) with AlGaN/GaN Schottky Barrier Diodes (SBDs).
We tried two methods for integrating vertical structures combined with SBDs and LEDs: (1) AlGaN/GaN SBD structure re-grown on InGaN/GaN LED structure, (2) InGaN/GaN LED structure re-grown on AlGaN/GaN SBD structure. Both of them had an accuracy problem of dry etching, so we developed a selective re-growth method to fabricate AC-LED incorporated with SBDs. In the SBD structure, we employed AlGaN/AlN multi-layers as the buffer layer to acquire the good device characteristics of an operation voltage of 2.75 V at 20 mA and a low leakage current of 75 μA at -200 V. Then we successfully demonstrated the integration of InGaN-based AC-LED chip with GaN SBDs by utilizing the photolithography process. The AC-LED has an emission area of about 88.4 % of the total chip area, while the integrated SBDs in a Wheatstone bridge (WB) scheme occupy only 3.3 % of the total chip area. Compare to the conventional WB AC-LEDs, the AC-LED integrated with SBD WB has a larger emission area by about 47 % and exhibit a higher integrated luminescence intensity by about 28 % at 130 V DC.
參考文獻
[1] S. Nakamura, T. Mukai, and M. Senoh, “P-GaN/N-InGaN/N-GaN Double-Heterostructure Blue-Light-Emitting Diodes,” Jpn. J. Appl. Phys., vol. 32, pp. L8-L11 (1993).
[2] J. P. Ao, H. Sato, T. Mizobuchi, K. Morioka, S. Kawano, Y. Muramoto, Y. B. Lee, D. Sato, Y. Ohno, and S. Sakai, “Monolithic Blue LED Series Arrays for High-Voltage AC Operation,” Phys. Stat. Sol. (a), vol. 194, pp. 376-379 (2002).
[3] J. Cho, J. H. Chae, H. Kim, H. Kim, J. W. Lee, S. Yoon, C. Sone, T. Jang, Y. Park, E. Yoon, and J. Jung, “Alternating-current Light Emitting Diodes with a Diode Bridge Circuitry,” Jpn. J. Appl. Phys., vol. 46, pp. L1194-L1196 (2007).
[4] H. H. Yen, H. C. Kuo, and W. Y. Yeh, “Characteristics of Single-Chip GaN-Based Alternating Current Light-Emitting Diode,” Jpn. J. Appl. Phys., vol. 47, pp. 8808-8810 (2008).
[5] G. A. Onushkin, Y. J. Lee, J. J. Yang, H. K. Kim, J. K. Son, G. H. Park, and Y. Park, “Efficient Alternating Current Operated White Light-Emitting Diode Chip,” IEEE Photon. Technol. Lett., vol. 21, pp. 33-35 (2009).
[6] N. C. Chen, Y. N. Wang, Y. S. Wang, W. C. Lien, and Y. C. Chen, “Damage of light-emitting diodes induced by high reverse-bias stress,” J. Cryst. Growth, vol. 311, pp. 994-997 (2009).
[7] M. Meneghini, U. Zehnder, B. Hahn, G. Meneghesso, and E. Zanoni, “Degradation of High-Brightness Green LEDs Submitted to Reverse Electrical Stress,” IEEE Electron Device Lett., vol. 30, pp. 1051-1053 (2009).
[8] H. H. Yen, H. C. Kuo, and W. Y. Yeh, “Particular Failure Mechanism of GaN-Based Alternating Current Light-Emitting Diode Induced by GaOx Oxidation, ” Photon. Technol. Lett., IEEE, vol. 22, pp. 1168-1170 (2010).
[9] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 85, pp. 3222-3233, (1999).
[10] M. L. Lee, J. K. Sheu, Y. K. Su, S. J. Chang, W. C. Lai, and G. C. Chi, “Reduction of dark current in AlGaN-GaN Schottky-barrier photodetectors with a low-temperature-grown GaN cap layer,” IEEE Electron Device Lett., vol. 25, pp. 593-595 (2004).
[11] J. Kotani, M. Tajima, S. Kasai, and T. Hashizume, “Mechanism of surface conduction in the vicinity of Schottky gates on AlGaN/GaN heterostructures,” Appl. Phys. Lett., vol. 91, pp. 093501-093501-3, (2007).
[12] N. F. Mott and E. A. Davis, Electronic Process in Non-Crystalline Materials, 2nd edition: Clarendon, Oxford, p.32 (1979).
[13] E. G. Brazel, M. A. Chin, and V. Narayanamurti, “Direct observation of localized high current densities in GaN films,” Appl. Phys. Lett., vol. 74, pp. 2367-2369 (1999).
[14] J. W. P. Hsu, M. J. Manfra, R. J. Molnar, B. Heying, and J. S. Speck, “Direct imaging of reverse-bias leakage through pure screw dislocations in GaN films grown by molecular beam epitaxy on GaN templates,” Appl. Phys. Lett.,, vol. 81, pp. 79-81 (2002).
[15] H. Hung, K. T. Lam, S. J. Chang, H. Kuan, C. H. Chen, and U. H. Liaw, “Effects of thermal annealing on In-induced metastable defects in InGaN films,” Mater. Sci. Semicond. Process, vol. 10, pp. 112-116 (2007).
[16] D. Visalli, M. V. Hove, J. Derluyn, S. Degroote, M. Leys, K. Cheng, M. Germain, and G. Borghs, “AlGaN/GaN/AlGaN Double Heterostructures on Silicon Substrates for High Breakdown Voltage Field-Effect Transistors with low On-Resistance,” Jpn. J. Appl. Phys., vol. 48, p. 04C101(4 pages) (2009).
[17] H. Ishikawa, G. Y. Zhao, N. Nakada, T. Egawa, T. Soga, T. Jimbo and M. Umeno, “High-Quality GaN on Si Substrate Using AlGaN/AlN Intermediate Layer, ” Phys. Stat. Sol. (a), vol. 176, pp. 599-603 (1999).
[18] D. Jena, A. C. Gossard, and U. K. Mishra, “Dislocation scattering in a two-dimensional electron gas,” Appl. Phys. Lett., vol. 76, pp. 1707-1709 (2000).
[19] Y. Z. Chiou,“Leakage Current Analysis of Nitride-Based Photodetectors by Emission Microscopy Inspection,” IEEE Sensors Journal, vol. 8, pp. 1506-1510 (2008).
[20] T. Kozawa, T. Kachi, H. Kano, H. Nagase, N. Koide, and K. Manabe,“Thermal stress in GaN epitaxial layers grown on sapphire substrates, ” J. Appl. Phys., vol. 77, pp. 4389-4392 (1995).
[21] Y. Honda, Y. Kuroiwa, M. Yamaguchi, and N. Sawaki, “Growth of GaN free from cracks on a (111)Si substrate by selective metalorganic vapor-phase epitaxy,” Appl. Phys. Lett.., vol. 80, pp. 222-224 (2002).
[22] C. H. Wang, S. P. Chang, W. T. Chang, J. C. Li, Y. S. Lu, Z. Y. Li, H. C. Yang, H. C. Kuo, T. C. Lu, and S. C. Wang, “Efficiency droop alleviation in InGaN/GaN light-emitting diodes by graded-thickness multiple quantum wells,” Appl. Phys. Lett., vol. 97, pp. 181101(3 pages) (2010).