| 研究生: |
吳姿儀 Tzu-Yi Wu |
|---|---|
| 論文名稱: |
合成用於鈣鈦礦太陽能電池載子傳遞及界面修飾材料的D-A type有機分子 |
| 指導教授: |
吳春桂
Chun-Geuy Wu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 134 |
| 中文關鍵詞: | 鈣鈦礦太陽能電池 、載子傳遞材料 、界面修飾材料 、D-A type有機分子 |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鈣鈦礦太陽能電池(Perovskite Solar Cells, PSCs)中,鈣鈦礦吸光層受光激發的激子要能夠順利被分開並各別傳遞至兩側電極才有機會流至外線路轉換成電能,因此載子傳輸材料與界面修飾材料在元件中扮演關鍵角色之一。近年來有機分子材料由於具有高的載子遷移率及可調整的前置軌域能階,極具運用在PSCs載子傳輸層及界面修飾層上的潛力。本研究以具有高平面性、高熱穩定性的IDT (indacenodithieno[3,2-b]-thiophene)骨架做為Donor單元,透過高平面性及剛性結構使分子間排列緊密,搭配帶有兩個強拉電子基的ITN-CN (benzo[c]thiophene-5,6-dicarbonitrile)做為Acceptor單元,一方面利用氰基的拉電子能力拉低化合物的前置軌域能階,另一方面透過路易斯鹼的氰基來修飾鈣鈦礦層缺陷,合成出小分子BT-IDT以及共聚物PBT-IDT。另外,在Donor單元的側鏈上引入電負度大的氟原子,降低共聚物前置軌域能階並增強分子間作用力,合成出共聚物PBT-F-IDT。小分子BT-IDT、共聚物PBT-IDT及共聚物PBT-F-IDT的熱裂解溫度分別為382℃、252℃及254℃,水接觸角皆大於90o;三個化合物的UV-Vis吸收光譜顯示小分子BT-IDT的邊界吸收(onset)落在約636 nm,而兩個共聚物PBT-IDT及PBT-F-IDT的onset延伸至835~855 nm。將小分子BT-IDT做為鈣鈦礦層/電洞傳遞層間的界面修飾層所組裝之一般式PSCs的光電轉換效率(Power conversion efficiency, PCE)可達22.10%(相對於無添加BT-IDT的20.50%);將兩共聚物PBT-IDT與PBT-F-IDT做為電洞傳遞層(hole transport layer, HTL)組裝成一般式PSCs的PCE值分別為10.40%及5.16%;將兩共聚物做為電子傳遞層(electron transport layer, ETL)組裝成反式PSCs的PCE值分別是5.19%及2.74%,其中以PBT-IDT為ETL所組裝之元件的效率(5.19%)高於無ETL所組裝之元件的效率(3.33%),表示PBT-IDT是有傳遞電子的能力。兩個共聚物中PBT-IDT做為HTL及ETL分別組裝之元件的效率皆優於PBT-F-IDT的原因之一為PBT-IDT的成膜性較佳,因此有較多的載子可以順利傳遞到電極。
In Perovskite Solar Cells (PSCs), the sunlight excited excitons must be successfully separated and transferred to the cathod and anode then to the external circuit to convert solar energy into electrity. Therefore, charge transport layers and interfacial layers play important roles in PSCs. Organic chemicals have great potential to be the PSC’s charge transport matreials due to their excellent carrier mobility and adjustable front orbital energy level. In this study, IDT (Indacenodithieno[3,2-b]-thiophene) derivatives with planarity and high thermal stability are used as donor units, and their planarity can stack tighly. ITN-CN (benzo[c]thio-phene-5,6-dicarbonitrile) is used as acceptor unit, two strong electron-withdrawing cyano groups on ITN-CN not only lower the front orbital energy level of the compound but also passivate perovskite layer by its Lewis basic nature. D-A small molecule as well as BT-IDT and PBT-IDT copolymers were designed and prepared in this study. Then insert fluorine atoms on the donor unit to lower the front orbital energy level and stronger the intermolecular interaction to form copolymer PBT-F-IDT. The decomposition temperatures of BT-IDT、PBT-IDT, and PBT-F-IDT are 382℃、252℃ ,and 254℃, respectively. UV-Vis absorption spectra show that the λonset of BT-IDT is about 636 nm and those of copolymer PBT-IDT and PBT-F-IDT extend to 835~855 nm. The power conversion efficiency (PCE) of regular PSCs based on BT-IDT as Perovskite/HTL interlayer is 22.10% (the PCE of PSC without BT-IDT layer is 20.50%). The PCE of regular PSCs devices based on PBT-IDT and PBT-F-IDT as HTLs are 10.40% and 5.16%, respectively. The PCE of inverted PSCs devices based on the two copolymers ETLs are 5.19% and 2.74%. Moreover the efficiency of inverted PSCs devices based on PBT-IDT as ETL is better than the deviced without ETL (3.33%). This means PBT-IDT has the ability to transport electrons.
[1] https://www.iea.org/reports/world-energy-investment-2021 (2022年9月24日)
[2] https://www.nrel.gov/pv/cell-efficiency.html (2022年1月19)
[3] 摘錄於工業材料雜誌第405期116頁
[4] GESTIS. Indium tin oxide: IFA (Institut fur Arbeitsschutz); 2017
[5] Ivanoff, C. S., Ivanoff, A. E., Hottel, T. L. “Gallium poisoning: a rare case report.” Food and chemical toxicology, 2012, 50, 212-215.
[6] https://www.myswitzerland.com/zh-hant/experiences/swisstech-convention-center/ (2020年4月20日)
[7] https://spec.ntu.edu.tw/20211029-research-chem2/
(2022年4月20日)
[8] C. Y. Chen, Z. H. Jian, S. H. Huang, K. M. Lee, M. H. Kao, C. H. Shen, J. M. Shieh, C. L. Wang, C. W. Chang, B. Z. Lin, C. Y. Lin, T. K. Chang, Y. Chi, C. Y. Chi, W. T. Wang, Y. Tai, M. D. Lu, Y. L. Tung, P. T. Chou, W. T. Wu, T. J. Chow, P. Chen, X. H. Luo, Y. L. Lee, C. C. Wu, C. M. Chen, C. Y. Yeh, M. S. Fan, J. D. Peng, K. C. Ho, Y. N. Liu, H. Y. Lee, C. Y. Chen, H. W. Lin, C. T. Yen, Y. C. Huang, C. S. Tsao, Y. C. Ting, T. C. Wei, C. G. Wu,“Performance characterization of dye-sensitized photovoltaics under indoor lighting.” J. Phys. Chem. Lett., 2017, 8, 1824−1830.
[9] Enzheng Shi, Yao Gao, Finkenauer, Blake P. Finkenauer, Akriti, Aidan H.Coffeya, Letian Dou, “Two-dimensional halide perovskite nano-materials and heterostructures.” Chem. Soc. Rev., 2018, 47, 6046-6072.
[10] Loredana Protesescu, Sergii Yakunin, Maryna I. Bodnarchuk, Franziska Krieg, Riccarda Caputo, Christopher H. Hendon, Ruo Xi Yang, Aron Walsh, Maksym V. Kovalenko, “Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut.” Nano Lett., 2015, 15, 3692−3696.
[11] Efstratia N. Sgourou, Yerasimos Panayiotatos, Konstantinos Davazoglou Andrei L. Solovjov, Ruslan V. Vovk, Alexander Chroneos, “Self-Diffusion in Perovskite and Perovskite Related Oxides: Insights from Modelling.” Appl. Sci., 2020, 10, 2286.
[12] Hyun Suk Jung, Nam-Gyu Park, “Perovskite Solar Cells: From Materials to Devices.” small, 2015, 11, 10-25.
[13] J. Zhao, X. Zheng, Y. Deng, T. Li, Y. Shao, A. Gruverman, J. Shield J. Huang, “Is Cu a stable electrode material in hybrid perovskite solar cells for a 30-year lifetime” Energy Environ. Sci., 2016, 9, 3650-3656.
[14] Hanul Min, Do Yoon Lee, Junu Kim, Gwisu Kim, Kyoung Su Lee, Jongbeom Kim, Min Jae Paik, Young Ki Kim, Kwang S. Kim, Min Gyu Kim, Tae Joo Shin, Sang Il Seok, “Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes.” Nature, 2021, 598, 444-450.
[15] Daizhe Wang, Tengling Ye, Yong Zhang, “Recent advances of non-fullerene organic electron transport materials in perovskite solar cells.” J. Mater. Chem. A, 2020, 8, 20819.
[16] Guan-Woo Kim, Hyuntae Choi, Minjun Kim, Junwoo Lee, Sung Yun Son, Taiho Park, “Hole Transport Materials in Conventional Structural (n–i–p) Perovskite Solar Cells: From Past to the Future.” Adv. Energy Mater., 2020, 10, 1903403.
[17] Xinxing Yin, Zhaoning Song, Zaifang Li, Weihua Tang, “Toward ideal hole transport materials: a review on recent progress in dopant-free hole transport materials for fabricating efficient and stable perovskite solar cells.” Energy Environ. Sci., 2020, 13, 4057-4086.
[18] Wu-Qiang Wu, Dehong Chen, Rachel A. Caruso and Yi-Bing Cheng, “Recent progress in hybrid perovskite solar cells based on n-type materials.” J. Mater. Chem. A, 2017, 5, 10092–10109.
[19] X. Yang, Z. Yu, L. Sun, A. Hagfeldt, B. Cai and X. Jiang, “Boosting the power conversion efficiency of perovskite solar cells to 17.7% with an indolo[3,2-b]carbazole dopant-free hole transporting material by improving its spatial configuration.” J. Mater. Chem. A, 2019, 7, 14835-14841.
[20] Naoki Ishida, Atsushi Wakamiya, Akinori Saeki, “Quantifying Hole Transfer Yield from Perovskite to Polymer Layer: Statistical Correlation of Solar Cell Outputs with Kinetic and Energetic Properties.” ACS Photonics, 2016, 3, 1678–1688.
[21] M. Stolterfoht, C. M. Wolff, Y. Amir, A. Paulke, L. Perdigón-Toro, P. Caprioglio, D. Neher, “Approaching the fill factor Shockley–Queisser limit in stable, dopant-free triple cation perovskite solar cells.” Energy Environ. Sci., 2017, 10, 1530-1539.
[22] Inhwa Lee, Jae Hoon Yun, Hae Jung Son, Taek-Soo Kim, “Accelerated Degradation Due to Weakened Adhesion from Li-TFSI Additives in Perovskite Solar Cells.” ACS Appl. Mater. Interfaces, 2017, 9, 7029–7035.
[23] Hassan Keypour, Mohammad Noroozi, Alimorad Rashidi, “An improved method for the purification of fullerene from fullerene soot with activated carbon, celite, and silica gel stationary phases.” J. nanostructure chem., 2013, 3, 1-9.
[24] Chao Ji, Chunjun Liang, Huimin Zhang, Mengjie Sun, Fulin Sun, Qi Song, Xuewen Zhang, Dan Li, Fangtian You, Zhiqun He, “C60-assisted crystal engineering for perovskite solar cells with enhanced efficiency and stability.” Organic Electronics, 2018, 63, 276-282.
[25] Zhaoyang Yao, Fuguo Zhang, Lanlan He, Xingqi Bi, Yaxiao Guo, Yu Guo, Linqin Wang, Xiangjian Wan, Yongsheng Chen, Licheng Sun, “Pyrene-Based Dopant-Free Hole-Transport Polymers with Fluorine-Induced Favorable Molecular Stacking Enable Efficient Perovskite Solar Cells.” Angew. Chem. Int. Ed., 2022, 61, e202201847.
[26] Zhaoyang Yao, Fuguo Zhang, Yaxiao Guo, Heng Wu, Lanlan He, Zhou Liu, Bin Cai, Yu Guo, Calvin J. Brett, Yuanyuan Li, Chinmaya Venugopal Srambickal, Xichuan Yang, Gang Chen, Jerker Widengren, Dianyi Liu, James M. Gardner, Lars Kloo, Licheng Sun, “Conformational and Compositional Tuning of PhenanthrocarbazoleBased Dopant-Free Hole-Transport Polymers Boosting the Performance of Perovskite Solar Cells.” J. Am. Chem. Soc., 2020, 142, 17681−17692.
[27] Ping Li, Josef M. Maier, Erik C. Vik, Christopher J. Yehl, Brent E. Dial, Amanda E. Rickher, Mark D. Smith, Perry J. Pellechia, Ken D. Shimizu, “Stabilizing Fluorine– Interactions.” Angew. Chem. Int. Ed., 2017, 56, 7209–7212.
[28] Shun-ichi Kawahara, Seiji Tsuzuki, Tadafumi Uchimaru, “Theoretical Study of the C−F/π Interaction: Attractive Interaction between Fluorinated Alkane and an Electron-Deficient π-System.” J. Phys. Chem. A, 2004, 108, 6744–6749.
[29] Hong Duc Pham, Terry Chien-Jen Yang, Sagar M. Jain, Gregory J. Wilson, [29] Prashant Sonar, “Development of Dopant-Free Organic Hole Transporting [29] Mate-rials for Perovskite Solar Cells.” Adv. Energy Mater., 2020, 10, 1903326.
[30] Xiaohui Liu, Xiaodong Li, Yang Zou, He Liu, Lei Wang, Junfeng Fang, Chuluo Yang, “Energy level-modulated non-fullerene small molecule acceptors for improved Voc and efficiency of inverted perovskite solar cells.” J. Mater. Chem. A, 2019, 7, 3336-3343.
[31] Linna Zhu, Wei Gao, Fei Wu, Lu Li, Chuluo Yang, “Regulating the electron transporting properties of indacenodithiophene derivatives for perovskite solar cells with PCEs up to 19.51%.” J. Mater. Chem. A, 2018, 6, 18044–18049.
[32] Fei Wu, Wei Gao,.Zhu, Hui Yu, Linna Zhu, Lu Li, Chuluo Yang “Extending Photoresponse to the Near-Infrared Region for Inverted Perovskite Solar Cells by Using a Low-Bandgap Electron Transporting Material.” Sol. RRL, 2020, 4, 1900565.
[33] Yong Hua, Song Chen, Dongyang Zhang, Peng Xu, Anxin Sun, Yangmei Ou, Tai Wu, Hanwen Sun, Bo Cuia, Xunjin Zhu, “Bis[di(4-methoxyphenyl)amino]-carbazole-capped indacenodithiophenes as hole transport materials for highly efficient perovskite solar cells: the pronounced positioning effect of a donor group on the cell performance.” J. Mater. Chem. A, 2019, 7, 10200.
[34] Guofeng You, Qixin Zhuang, Lijun Wang, Xinyu Lin, Ding Zou, Zhenghuan Lin, Hongyu Zhen, Wenliu Zhuang, Qidan Ling, “Dopant-Free, Donor–Acceptor-Type Polymeric Hole-Transporting Materials for the Perovskite Solar Cells with Power Conversion Efficiencies over 20%.” Adv. Energy Mater., 2020, 10, 1903146.
[35] Viktor V. Brus, Jaewon Lee, Ben Luginbuhl, Seo-Jin Ko, Guillermo C. Bazan, Thuc-Quyen Nguyen, “Solution-Processed Semitransparent Organic Photovoltai-cs: From Molecular Design to Device Performance.” Adv. Mater., 2019, 31, 1900904
[36] Jessica D. Douglas, Gianmarco Griffini, Thomas W. Holcombe, Eric P. Young, Olivia P. Lee, Mark S. Chen, Jean M. J. Frechet ́, “Functionalized Isothianaph-thene Monomers That Promote Quinoidal Character in Donor−Acceptor Co-polymers for Organic Photovoltaics.” Macromolecules, 2012, 45, 4069−4074.
[37] Kakaraparthi Kranthiraja, Sang Ho Park, Hyunji Kim, Kumarasamy Gunasekar, Gibok Han, Bumjoon J. Kim, Chang Su Kim, Soohyun Kim, Hyunjung Lee, Ryosuke Nishikubo, Akinori Saeki, Sung-Ho Jin, Myungkwan Song, “Accomplishment of Multi-Functional π-Con-jugated Polymers by Regulating the Degree of Side-Chain Fluorination for Efficient Dopant-Free Ambient-Stable Perovskite Solar Cells and Organic Solar Cells.” ACS Appl. Mater. Interfaces, 2017, 9, 36053–36060.
[38] Qi Jiang, Yang Zhao, Xingwang Zhang, Xiaolei Yang, Yong Chen, Zema Chu, Qiufeng Ye, Xingxing Li, Zhigang Yin, Jingbi You, “Surface passivation of perovskite film for efficient solar cells.” Nat. Photonics, 2019, 13, 460-466.
[39] N. K. Noel, Abate, S D. Stranks, E S. Parrott, V M. Burlakov, A Goriely, H J. Snaith, “Enhanced photoluminescence and solar cell performance via lewis base passivation of organic inorganic lead halide perovskites.” ACS Nano, 2014, 8, 9815-9821.
[40] Kai Wang, Jiang Liu, Jun Yin, Erkan Aydin, George T. Harrison, Wenzhu Liu, Shanyong Chen, Omar F. Mohammed, Stefaan De Wolf, “Defect Passivation in Perovskite Solar Cells by Cyano-based π-conjugated Molecules for Improved Performance and Stability.” Adv. Funct. Mater., 2020, 30, 2002861.
[41] Yi-Chun Chen, Chao-Ying Yu, Yu-Ling Fan, Ling-I Hung, Chih-Ping Chen, Ching Ting, “Low-Bandgap Conjugated Polymers for High Efficient Photovoltaic Applications.” Chem. Commun., 2010, 46, 6503-6505.
[42] Kevin Wayne Kuntz, Richard Chesworth, Kenneth William Duncan, Heike Keilhack, Natalie Warholic, Christine Klaus, Masashi Seki, Syuji Shirotori, Satoshi Kawano, Timothy James Nelson Wigle, Sarah Kathleen Knutson, “Aryl-or heteroaryl-substituted benzene compounds.” U.S. Patent, NO. 033648, 2012
[43] Timothy J. Montavon, Yunus E. Trkmen, Noumaan A. Shamsi, Christopher Miller, Chintan S. Sumaria, Viresh H. Rawal, Sergey A. Kozmin, “ [2+2+2] Cycloaddi-tions of Siloxy Alkynes with 1,2-Diazines: From Reaction Discovery to Identification of an Antiglycolytic Chemotype.” Angew. Chem. Int. Ed. Engl., 2013, 52, 13576-13579.
[44] Gifty Blankson, Ajit K.Parhi, Malvika Kaul, Daniel S.Pilch, Edmond J. LaVoie, “Structure-activity relationships of potentiators of the antibiotic activity of clarithromycin against Escherichia coli.” Eur. J. Med. Chem., 2019, 178, 30-38.
[45] Sergey S. Zalesskiy and Valentine P. Ananikov, “Pd2(dba)3 as a Precursor of Soluble Metal Complexes and Nanoparticles: Deter-mination of Palladium Active Species for Catalysis and Synthesis.” Organometallics, 2012, 31, 2302−2309.
[46] D. Milstein, J. K. Stille, “A General, Selective, and Facile Method for Ketone Synthesis from Acid Chlorides and Organotin Compounds Catalyzed by Palladium.” J. Am. Chem. Soc., 1978, 100, 3636-3638.
[47] Leonardo S. Santos, Giovanni B. Rosso, Ronaldo A. Pilli, Marcos N. Eberlin, “The Mechanism of the Stille Reaction Investigated by Electrospray Ionization Mass Spectrometry.” J. Org. Chem., 2007, 72, 5809-5812.
[48] Simon P. H. Mee, Victor Lee, Jack E. Baldwin, “Stille Coupling Made Easier—The Synergic Effect of Copper(I) Salts and the Fluoride Ion.” Angew. Chem. Int. Ed. Engl., 2004, 43, 1132.
[49] https://organicchemistrydata.org/hansreich/resources/nmr/?index=nmr_index%2F19F_shift#f-data01 (2022年4月18日)
[50] J. Lee, G.W. Kim, M. Kim, S. A. Park, T. Park, “Nonaromatic Green Solvent Processable, Dopant Free, and Lead‐Capturable Hole Transport Polymers in Perovskite Solar Cells with High Efficiency.” Adv. Energy Mater., 2020, 10, 1902662.
[51] K. Kranthiraja, K. Gunasekar, H. Kim, A.-N. Cho, N. G. Park, S. Kim, B. J. Kim, R. Nishikubo, A. Saeki, M. Song, S.-H. Jin, “High‐Performance Long Term Stable Dopant Free Perovskite Solar Cells and Additive‐Free Organic Solar Cells by Employing Newly Designed Multirole π‐Conjugated Polymers.” Adv. Mater., 2017, 29, 1700183.
[52] Q. Fan, Q. Zhu, Z. Xu, W. Su, J. Chen, J. Wu, X. Guo, W. Ma, M.Zhang, Y. Li, “Chlorine substituted 2D-conjugated polymer for high-performance polymer solar cells with 13.1% efficiency via toluene processing.” Nano Energy, 2018,
48, 413-420.
[53] S. Zhang, Y. Qin, J. Zhu and J. Hou, “Over 14% Efficiency in Polymer Solar Cells Enabled by a Chlorinated Polymer Donor.” Adv. Mater., 2018, 30, e1800868.