| 研究生: |
蘇思伃 Shih-Yu Su |
|---|---|
| 論文名稱: |
二氧化碳封存場址之震測資料分析 Seismic Data Analysis of CCS Site |
| 指導教授: | 王乾盈 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 地球科學學系 Department of Earth Sciences |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 二氧化碳封存 、振幅與支距分析 、AVO |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來由於全球暖化帶來生態衝擊,針對控制溫室氣體二氧化碳,全球已達到共識。二氧化碳地質封存是被推薦鼓勵的方法,利用地質構造來封存二氧化碳。本研究利用高解析反射震測法調查可能的二氧化碳封存場址,探討場址地下細微構造。高解析反射震測法探測尺度及規模都較探油工業震測來的小,但使用的頻率較高,使得解析度可提高約3~5倍。利用此種特性來做二氧化碳封存場址探測可以得到非常好的結果,因一般封存深度都約在1~3公里處,而高解析反射震測可以獲得精細的地層構造,幫助評估儲藏量或作為封存移棲監測。
本研究利用王功一號井的地層資料,並藉由四條長距離跳躍銜接的震測剖面,將地層資料引入到北方15公里的彰濱工業區內。將彰濱工業區內有六條相互交叉分佈的高解析震測測線做密集比對,分析各剖面的地層深度分佈,從而建立起全測區地下地層分佈。以此為基礎,本研究更進一步分析測區六條測線上,沿測線連續的炸點剖面內的振幅隨支距變化情形(AVO分析),觀察不同地層其沿著測線的反射特性,探討二氧化碳儲集層可能的物理特性,並做為未來儲集後,偵測地層特性改變之比較資料。
本研究獲得以下結論:(1)經由測線交叉比對,計算得知測區的地層走向約北偏東8度,向東傾3.8度。未來若儲氣後,儲體會往西方海域方向移棲。(2) 測區測線交叉比對結果相當良好,表示震測信號足以信賴。震測剖面顯示地下地層平緩,無明顯構造存在,尤其絲毫沒有斷層痕跡。(3) P波反射係數相對於S波反射係數有大幅度下降時,表示有含氣砂岩的存在,但反之則無。測區大部分測線,P波反射係數變化和緩,而S波反射係數變化較大,可以推估在主要反射層之下層砂岩孔隙較大且含水。(4)未來若要再次進行AVO分析,在施測前評估可多提高CDP重合數來達到較好的AVO分析結果。在二氧化碳封存注入後,利用AVO分析可以更加快速的定位出二氧化碳移棲的路徑,達到監控的效果。
The reduction of carbon dioxide emission to lessen the global warming has become an important international issue in recent years. Geological storage of carbon dioxide is recommended by IPCC to be an efficient and feasible way to handle the CO2 problem. In this study, we use high-resolution seismic reflection method to investigate possible CO2 storage sites. This high resolution seismic method has smaller scale comparing to those used in oil exploration industry. However, the resolution is relatively high and can detect much finer structures which are needed in the CCS site investigation. The resolution power is expected to be as small as 4m with a depth up to 3km.
A well at WangGong was used to provide the appropriate stratigraphic information of the region. By aligning four sequential seismic lines, we are able to extrapolate this well stratigraphic data to the Jhangbin area, 15 km north. The Jhangbin industrial area is our study area. Six cross-tied high-resolution seismic lines are distributed over the Jhangbin area to find detailed underground structures. On this basis, we further analyze these survey lines by the amplitude versus Offset (AVO) analysis. The P and S reflection coefficients are studied with the purpose to evaluate the porosity properties and to prepare baseline data for the future CO2 injection monitoring.
The following conclusions are obtained: (1) the structural layers are found to dip 3.8 degrees and strike 8 degrees east of north. This means that the CO2 will migrate toward the sea direction after storage. (2) the seismic lines possess very good ties, which guarantees excellent data quality of the survey. The layered structures are quite flat without any trace of structural disorder such as faults. (3) the P-wave reflection coefficient are quite smooth and, on the contrary, the S-wave reflection coefficient varies significantly. This indicates the porosities in the bottom sand layer are high, but filled with interlaced silt or water. (4) for the future AVO analysis, the fold number is suggested to increase to obtain better results. The AVO analysis can be more efficient to detect carbon dioxide and to monitor its migration after storage.
(1)Aki.K. L. and Richards, P. G., 1980, Quantitative seismology: W. H.
Freeman and Co, 1980.
(2)Bortfeld, R.. Approximation to the reflection and transmission
coefficients of plane longitudinal and transverse waves: GeophysProsp 9,pp. 485-502, 1961.
(3)Castagna, J. P., “Petrophysical imaging using AVO.” The Leading Edge 12(3), pp.172-178, 1993.
(4)Castagna, J. P., et al.,” Relationships between compressional-wave and shear-wave velocities in clastic silicate rocks.” Geophysics 50(4), pp. 571-581, 1985.
(5)Castagna, J. P. and H. W. Swan, “Principles of AVO crossplotting.” The Leading Edge 16(4), pp.337-344, 1997.
(6)Castagna, J. P., et al. “Framework for AVO gradient and intercept interpretation.” Geophysics 63(3): 948-956, 1998.
(7)Fatti, J. L., et al. "Detection of gas in sandstone reservoirs using AVO analysis: A 3-D seismic case history using the Geostack technique." Geophysics 59(9), pp.1362-1376, 1994.
(8)Foster, D. J., et al.“Interpretation of AVO anomalies. “Geophysics 75(5), pp.75A73-75A13, 2010.
(9)Gardner, G., et al. “Formation velocity and density-the diagnostic basics for stratigraphic traps.” Geophysics 39(6), pp.770-780, 1974.
(10)Goodway, B., et al. “Improved AVO Fluid Detection And Lithology Discrimination Using Lamé Petrophysical Parameters; λρ, μρ, λμ Fluid Stack, From P And S Inversions.” SEG Annual Meeting, 1997.
(11)Gretener, P.,“AVO and Poisson's ratio. “ The Leading Edge 22(1), pp.70-72, 2003.
(12)Bert M. , Ogunlade D. et. al., IPCC Report, Carbon Dioxide Capture and Storage, 2005.
(13)IPCC Special Report, CO2 Emissions from Fuel Combustion 2012, 2012.
(14)Koefoed, O.,” On the Effect of Poisson's Ratios of Rock Strata on the Reflection Coefficients of Plane WAVES.” Geophysical Prospecting 3(4), pp.381-387, 1955.
(15)Lin, A., et al.,“Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region.” Basin Research 15(4), pp.453-478, 2003.
(16)Mallick, S.,” AVO and elastic impedance.” The Leading Edge 20(10), pp.1094-1104, 2001.
(17)Ostrander, W.,“Plane-wave reflection coefficients for gas sands at nonnormal angles of incidence.” Geophysics 49(10), pp.1637-1648, 1984.
(18)Russell, B. H., et al. “Fluid-property discrimination with AVO: A Biot-Gassmann perspective.” Geophysics 68(1), pp.29-39, 2003.
(19)Rutherford, S. R. and R. H. Williams. “Amplitude-versus-offset variations in gas sands. Geophysics 54(6), pp.680-688, 1989.
(20)Shuey, R.” A simplification of the Zoeppritz equations.” Geophysics 50(4): pp. 609-614, 1985.
(21)Smith, G. and P. Gidlow,“ Weighted Stacking for Rock Property Estimation and Detection of GAS.” Geophysical Prospecting 35(9): pp. 993-1014, 1987.
(22)Verm, R. and F. Hilterman, “ Lithology color-coded seismic sections: The calibration of AVO crossplotting to rock properties.” The Leading Edge 14(8): pp.847-853, 1995.
(23)Yilmaz, Ö.. Seismic data analysis: processing, inversion, and interpretation of seismic data, SEG Books, 2001.
(24)Zoeppritz, Karl. Erdbebenwellen VII. VIIb. Über Reflexion und Durchgang seismischer Wellen durch Unstetigkeitsflächen. Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-physikalische Klasse: pp.66-84, 1919.
(25)鄧屬予,臺灣的沉積岩,經濟部中央地質調查所出版品,民國86年。
(26)吳明賢、胡錦城、陳彥宏、巫國華,「油氣儲聚地質風險評估精準化之建立及其在台灣西北部之應用」,探採研究彙報,第26 期,第461-472 頁,民國93年。
(27)吳明賢、周學良、王乾盈、胡錦城,「台灣西北部等厚圖的變化及其地質上的意義」,臺灣石油地質,第38期,第82-97頁,民國97年。
(28)劉致育,「利用中尺度震測系統來探討二氧化碳封存場址」,國立中央大學,碩士論文,民國97年。
(29)蔡志勤,「反射震測資料之震波速度與震幅-支距分析推估台灣西南海域地層中天然氣水合物之潛能」,國立臺灣大學,博士論文,民國98年。
(30)楊健男,「二氧化碳地質封存潛能評估與封存場址選擇: 以桃園台地為例」,國立中央大學,碩士論文,民國99年。
(31)陳揚琛,「利用震測方法探討台中至彰化外海的二氧化碳地質封存潛能」,國立中央大學,碩士論文,民國100年。
(32)曾繼忠等人,「永和山氣田二氧化碳封存先導試驗模擬研究」,鑛冶,中國鑛冶工程學會會刊,第217期,第23-40頁,民國101年。
(33)賴炤輝、陳太山,「三分量震測在官田氣田附近之探勘應用」,鑛冶,中國鑛冶工程學會會刊,第54期,第78-88頁,民國99年。