跳到主要內容

簡易檢索 / 詳目顯示

研究生: 范萬昌
Wian-Zhang Fian
論文名稱: 不同環境下之Custom 450不銹鋼腐蝕疲勞性質研究
指導教授: 林志光
Chih-Kuang Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 88
語文別: 中文
論文頁數: 122
中文關鍵詞: Custom 450不銹鋼腐蝕疲勞
外文關鍵詞: Custom 450 stainless steel, corrosion fatigue
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報



  • List of TablesVIList of Figures.VII第一章 簡介11-1 研究背景11-2 腐蝕疲勞機構21-3 析出硬化型不銹鋼腐蝕疲勞性質文獻回顧51-4 酸鹼度、氯離子濃度及溫度對腐蝕疲勞性質的影響71-5 裂縫閉合現象101-6 研究目的12第二章 實驗方法與程序142-1 材料及試片製作142-2 時效熱處理142-3 實驗環境142-4 軸向疲勞試驗152-5 疲勞裂縫成長試驗152-6 電化學試驗162-7 破斷面及裂縫成長模式觀察17第三章 結果與討論183-1 熱處理對微結構及機械性質的影響183-2 電化學試驗193-3 環境參數對高週疲勞性質的影響213-4 環境參數對疲勞裂縫成長性質的影響253-5 時效熱處理對疲勞性質的影響283-6 疲勞破斷面及裂縫成長之觀察31第四章 結論33參考文獻35Tables40Figures43

    [1] W. F. Smith, Structure and Properties of Engineering Alloys, 2nd ed., McGraw-Hill,
    Inc., New York, USA, 1993, p. 328.
    [2] Carpenter Precipitation Hardening Stainless Steel, Manufacturer’s Product Bulletin,
    Carpenter Technology Co., PA, 1986.
    [3] V. P. Swaminathan and J. W. Cunningham, “Correlations Between LP Blade Failures
    and Steam Turbine Characteristics,” pp. 3.1-3.16 in Corrosion Fatigue of Steam
    Turbine Blade Materials, Edited by R. I. Jaffee, Pergamon Press, New York, 1983.
    [4] M. R. Bayoumi, “Fatigue Behavior of a Commercial Aluminum Alloy in Sea Water
    at Different Temperatures,” Engineering Fracture Mechanics, Vol. 45, 1993, pp. 297-
    307.
    [5] S. Suresh, Fatigue of Materials, Chapt. 12, Cambridge University Press, New York,
    1991.
    [6] F. P. Ford and M. Silverman, Mechanistic Aspects of Environment-Controlled Crack
    Propagation in Steel/Aqueous Environment System, Report No. HTGE-451-8-12,
    General Electric Company, Schenectady, New York, 1979.
    [7] K. N. Krishnan, “Mechanism of Corrosion Fatigue in Super Duplex Stainless Steel in
    3.5 Percent NaCl Solusion,” International Journal of Fracture, Vol. 88, 1997, pp.
    205-213.
    [8] K. J. Miller and R. Akid, “The Application of Microstructural Fracture Mechanics to
    Various Metal Surface States,” Proceedings of the Royal Society of London, Series A,
    Mathematical and Physical Sciences, Vol. 452, 1996, pp. 1411-1432.
    [9] R. Akid and G. Murtaza, “Environment Assisted Short Crack Growth Behaviour of a
    High Strength Steel,” pp. 193-207 in Short Fatigue Cracks, ESIS 13, Mechanical
    Engineering Publications, London, 1992.
    [10] D. J. Duquette, “A Review of Aqueous Corrosion Fatigue,” pp.12-24 in Corrosion
    Fatigue: Chemistry, Mechanics and Microstructure, Edited by O. Devereux, A. J.
    Evily, and R. W. Staehle, National Association of Corrosion Engineers, Houston,
    1971.
    [11] 柯賢文, 腐蝕及其防制, 全華科技出版社, 台北, 1995, pp. 127-135.
    [12] 左景伊, 應力腐蝕破裂, 西安交通大學出版社, 陝西西安, 1985, pp. 1-9.
    [13] R. P. Wei and G. W. Simmons, “Recent Progress in Understanding Environment
    Assisted Fatigue Crack Growth,” International Journal of Fracture, Vol. 17, 1981, pp.
    235-247.
    [14] L. Hagn, “Results of Corrosion Fatigue Tests with Blade Materials,” pp. 2.86-2.136
    in Corrosion Fatigue of Steam Turbine Blade Materials, Edited by R. I. Jaffee,
    Pergamon Press, New York, 1983.
    [15] K. Schneider, “Resume: Corrosion Fatigue Behavior of Turbine Blade Materials,” pp.
    2.138-2.156 in Corrosion Fatigue of Steam Turbine Blade Materials, Edited by R. I.
    Jaffee, Pergamon Press, New York, 1983.
    [16] L. E. Willertz, T. M. Rust, and V. P. Swaminathan, “High Cycle Corrosion Fatigue of
    Some Steam Turbine Blade Alloys,” pp. 3.75-3.106 in Corrosion Fatigue of Steam
    Turbine Blade Materials, Edited by R. I. Jaffee, Pergamon Press, New York, 1983.
    [17] T. M. Rust and V. P. Swaminathan, “Corrosion Fatigue Testing of Steam Turbine
    Blading Alloys,” pp. 3.107-3.130 in Corrosion Fatigue of Steam Turbine Blade
    Materials, Edited by R. I. Jaffee, Pergamon Press, New York, 1983.
    [18] B. C. Syrett, R. Viswanathan, S. S. Wing, and J. E. Wittig, “Effect of Microstructure
    on 17-4 PH Blade Turbine Steel in Chloride Environments,” Corrosion, Vol. 38,
    1982. pp. 273-282.
    [19] 林昭平, “平均應力與頻率效應對17-4 PH 腐蝕疲勞性質之影響,” 國立中央大學
    機械工程研究所碩士論文, 1999.
    [20] K. S. Raja and K. P. Rao, “Stress Corrosion Cracking Behavior of 17-4 PH Stainless
    Steel Weldments at Open-Circuit Potentials,” Journal of Materials Science Letters,
    Vol. 12, 1993, pp. 957-960.
    [21] K. Schleithoff and F. Schmitz, “Stress Corrosion Cracking Tests on Turbine Blade
    Material,” pp. 2.70-2.85 in Corrosion Fatigue of Steam Turbine Blade Materials,
    Edited by R. I. Jaffee, Pergamon Press, New York, 1983.
    [22] U. Kamachi Mudali, A. K. Bhaduri and J. B. Gnanamoorthy, “Corrosion Behavior of
    17-4 PH Stainless steel,” Materials Science and Technology, Vol. 6, 1990, pp. 475-
    481.
    [23] 蔡文杰, “熱處理對17-4 PH 與Custom 450 不銹鋼之腐蝕疲勞行為影響,” 國立
    中央大學機械工程研究所碩士論文, 1998.
    [24] O. Jonas, “Characterization of Steam Turbine Environment and Selection of Test
    Environment,” pp. 3.35-3.74 in Corrosion Fatigue of Steam Turbine Blade Materials,
    Edited by R. I. Jaffee, Pergamon Press, New York, 1983.
    [25] J. Mankowski and Z. S. Smialowska, “Studies on Accumulation of Chloride Ions in
    Pits Growing During Anodic Polarization,” Corrosion Science, Vol. 15, 1975, pp.
    493-501.
    [26] Y. R. Qian and J. R. Cahoon, “Crack Initation Mechanisms for Corrosion Fatigue of
    Austenitic Stainless Steel,” Corrosion Science, Vol. 53, 1997, pp. 129-135.
    [27] G. Sandoz, C. T. Fujii, and B. F. Brown, “Solution Chemistry Within Stress-
    Corrosion Crack in Alloy Steels,” Corrosion Science, Vol. 10, 1970, pp. 839-845.
    [28] K. Komai and K. Minoshima, “Dynamic and Cyclic Stress Corrosion Cracking
    Resistance of Metals,” pp. 373-389 in Advanced Materials for Severe Service
    Applications, Edited by K. Iida and A. J. McEvily, Elsevier Applied Science, New
    York, 1986
    [29] S. Hattori and T. Okada, “Corrosion Fatigue Crack Initation Behavior of a Structural
    Steel in Salt Solution with Various Concentrations,” pp. 1617-1623 in Fatigue 90,
    Vol. 3, Edited by H. Kitagawa and T. Tanaka, Materials and Component Engineering
    Publications Ltd, Birmingham, UK, 1990.
    [30] H. Ouchi, J. Kobayashi, I. Soya, and K. Okamoto, “Fatigue Crack Growth in a High
    Tensile Strength Steel in Seawater and Several Other Environments,” ISIJ
    International, Vol. 34, 1994, pp. 451-459.
    [31] C. T. Fujii and J. A. Smith, “Environmental Influences on the Aqueous Fatigue Crack
    Growth Rates of HY-130 Steel,” pp. 390-402 in Corrosion Fatigue: Mechanics,
    Metallurgy, Electrochemistry, and Engineering, ASTM STP 801, Edited by T. W.
    Crooker and B. N. Leis, American Society for Testing and Materials, Philadelphia,
    USA., 1983.
    [32] P. –H. Effertz, “Test in Order to Determine Pitting Corrosion Susceptibility,” pp.
    2.29-2.55 in Corrosion Fatigue of Steam Turbine Blade Materials, Edited by R. I.
    Jaffee, Pergamon Press, New York, 1983.
    [33] R. Ebara, T. Yamada, and H. Kawano, “Corrosion Fatigue Process of 12 Cr Stainless
    Steel,” ISIJ International, Vol. 30, 1990, pp. 535-539.
    [34] A. D. Batte and M. C. Murphy, “The Corrosion Fatigue of 12%Cr Blade Steels in
    Low Pressure Steam Turbine Environments,” pp. 4.77-4.98 in Corrosion Fatigue of
    Steam Turbine Blade Materials, Edited by R. I. Jaffee, Pergamon Press, New York,
    1983.
    [35] 田永奎, 金屬腐蝕與防護, 機械工業出版社, 北京, 1995.
    [36] J. D. Atkinson, J. Yu, Z. Y. Chen, and Z. J. Zhao, “Modelling of Corrosion Fatigue
    Crack Growth Plateaux for RPV Steels in High Temperature Water,” Nuclear
    Engineering and Design, Vol. 184, 1998, pp. 13-25.
    [37] Y. Nakai, K. Tanaka, and R. P. Wei, “Short-Crack Growth in Corrosion Fatigue for a
    High Strength Steel,” Engineering Fracture Mechanics, Vol. 24, 1986, pp. 433-444.
    [38] R. P. Wei, “Some Aspects of Environment-Enhanced Fatigue Crack Growth,”
    Engineering Fracture Mechanics, Vol. 1, 1970, pp. 633-651.
    [39] L. A. James, “The Effect of Temperature and Cyclic Frequency upon Fatigue Crack
    Growth Behavior of Several Steels in an Elevated Temperature Aqueous
    Environment,” Journal of Pressure Vessel Technology, Transactions of the ASME,
    Vol. 116, 1994, pp. 116-127.
    [40] D. N. Lee and S. K. Lee, “Corrosion Fatigue of SAE 51100 Steel in 3% NaCl
    Solution,” Materials Science and Technology, Vol. 5, 1989, pp. 477-486.
    [41] A. Boateng, J. A. Begley, and R. W. Staehle, “Corrosion Fatigue of Type 304
    Stainless Steel in H2SO4 and Boiling NaOH,” Corrosion, Vol. 36, 1980, pp. 633-638.
    [42] K. H. Mayer, “From Failure Statistics to Research Program Study of Corrosion
    Fatigue Behavior Under Conditions of Incipient Steam Wetness,” pp. 2.1-2.18 in
    Corrosion Fatigue of Steam Turbine Blade Materials, Edited by R. I. Jaffee,
    Pergamon Press, New York, 1983.
    [43] P. C. Paris and F. Erdogan, “A Critical Analysis of Crack Propagation Laws,” Journal
    of Basic Engineering, Vol. 85, 1960, pp. 528-534.
    [44] W. Elber, “Fatigue Crack Clousure Under Cyclic Tension,” Engineering Fracture
    Mechanics, Vol. 2, 1970, pp. 37-45.
    [45] S. Suresh and R. O. Ritchie, “Propagation of Short Crack,” International Metals
    Reviews, Vol. 29, 1984, pp. 445-476.
    [46] A. K. Vasudeven, K. Sadanandam, and N. Louat, “A Review of Crack
    Closure,Fatigue Crack Threshold and Related Phenomena,” Materials Science and
    Engineering, Vol. A188, 1994, pp. 1-22.
    [47] S. Suresh and R. O. Ritchie, “On the Influence of Environment on the Load Ratio
    Dependence of Fatigue Thresholds in Pressure Vessel Steel,” Engineering Fracture
    Mechanics, Vol. 18, 1983, pp. 785-800.
    [48] Y. G. Chun, S. I. Pyun, and S. M. Lee, “The Influence of Loading Frequency on the
    Fatigue Crack Propagation Behaviour of Al- Zn-Mg Alloy at Low Cyclic Stress
    Intensity Level in 3.5 wt% NaCl Solution,” Journal of Materials Science Letters, Vol.
    10, 1991, pp. 1439-1442.
    [49] “Standard Practice for Conducting Constant Amplitude Axial Fatigue Tests of
    Metallic Materials,” ASTM E466-96, Annual Book of ASTM Standards, Vol. 3.01,
    American Society for Testing and Materials, Philadelphia, USA, 1998, pp. 471-475.
    [50] “Standard Test Method for Measurement of Fatigue Crack Growth Rates,” ASTM
    E647-95a, Annual Book of ASTM Standards, Vol. 3.01, American Society for Testing
    and Materials, Philadelphia, USA, 1998, pp. 562-598.
    [51] U. K. Viswanaathan, S. Banerjee and R. Krishnan, “Effects of Aging on the
    Microstructure of 17-4 PH Stainless Steel,” Materials Science and Engineering, Vol.
    A104, 1988, pp. 181-189.
    [52] Y. Kondo, “Prediction of Fatigue Crack Initiation Life Based on Pit Growth,”
    Corrosion, Vol. 45, 1989, pp. 7-11.
    [53] C. Laird and D. J. Duquette, “Mechanisms of Fatigue Crack Nucleation,” pp. 88-115
    in Corrosion Fatigue: Chemistry, Mechanics and Microstructure, Edited by O.
    Devereux, A. J. Evily, and R. W. Staehle, National Association of Corrosion
    Engineers, Houston, 1971.
    [54] Z. F. Wang, C. L. Briant, K. S. Kumar, X. J. Wei, J. Li, and W. Ke, “Effect of Anodic
    Dissolution and Hydrogen Absorption on Plastic Zone at Fatigue Crack Tip in
    Structural Steel,” Materials Transactions, JIM, Vol. 39, 1998, pp.365-369.
    [55] 鮮祺振, 腐蝕理論與實驗, 徐氏基金會, 台北, 1974.
    [56] P. Munn and B. Andersson, “Hydrogen Embrittlement of PH 13-8Mo Steel in
    Simulated Real-Life Tests and Slow Strain Rate Tests,” Corrosion, Vol. 46, 1990, pp.
    286-295.

    QR CODE
    :::