跳到主要內容

簡易檢索 / 詳目顯示

研究生: 彭柏森
Bo-Sen Peng
論文名稱: 輕量化富鈦高熵合金設計及機械性質探討
Alloy design and mechanical properties study of titanium-rich light-weight high-entropy alloy
指導教授: 鄭憲清
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學與工程研究所
Graduate Institute of Materials Science & Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 119
中文關鍵詞: 輕量化非等比例高熵合金
外文關鍵詞: light-weight, non-equiatomic, high-entropy alloy
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高熵合金之於傳統合金擁有獨特的顯微結構以及優越的機械性質,在應用中引起極大的研究關注。過去十幾年,大部分的研究主要在多元等量的成分上。而本研究將探討非等量高熵合金之成分設計,欲設計出密度在5 g/cm3且具有高強度以及高延展性的高熵合金。
    首先由低密度金屬元素Ti、Al開始進行成分設計並配合高熵合金相關參數,由四元合金Ti50系列(Ti50Al25V25-xCrx、Ti50Al25Nb25-xCrx、Ti50Al45-xNbxCr5)逐步至五元Ti60合金系列(Ti60Al40-x(NbVCr)X),找出適當的合金成分進行微結構分析、機械性質分析、氧化分析以及電化學分析。根據XRD結果顯示,無論是Ti50或Ti60合金系統其微結構皆為單一BCC相;由密度分析結果顯示,五元合金較四元合金系統由更多原子種類結合,導致晶格扭曲效應更加明顯而造成體積膨脹現象;從硬度結果來看,在Ti50Al45-xNbxCr5系列合金中將Al含量由30%降至20%其硬度值從480Hv大幅下降至365Hv,顯示Ti、Al元素之間含量比對合金整體硬度有著非常大的影響力;以SEM觀察合金試片拉伸後之破斷面,可以在Ti60Al10(NbVCr)30中發現類似葉脈狀紋路的塑性行為,此合金成分在本研究中也具有最佳機械性質,其降伏強度1009MPa、抗拉強度1223MPa、塑性更高達27.1%;其磨耗性質也與商用合金Ti6Al4V相當。
    在確定Ti60Al10(NbVCr)30合金具有優越的延展性之基本性質條件下,相信藉由冷軋變形使晶粒結構改變調整其機械性質,勢必能夠獲得具有更高強度且保有延展性之高熵合金。


    High-entropy alloys (HEA) attract great attention in past few decades. Most HEA researches mainly concentrate on the heavier multi-principal elements with equiatomic or near-equiatomic alloys. In this study, we focus on the light-weight and non-equiatomic medium-entropy alloys (MEA) system with low density (below 5g/cm3). Series of non-equiatomic quaternary alloy system, Ti-Al-Cr-Nb、Ti-Al-Cr-V were firstly designed by using calculating parameter (∆S、∆H、δr), then further modified into quinary Ti-Al-Cr-Nb-V alloy system. All samples were prepared by vacuum arc melting and rapidly cooling process. The XRD results of Ti-Al-Cr-Nb 、Ti-Al-Cr-V and Ti-Al-Cr-Nb-V MEA reveal the single BCC structure. The hardness value of Ti60-Al-Cr-Nb reduced from 480Hv to 365Hv with decreasing the Al content which implies that the ratio of Ti/ Al elements plays an important role on the alloy hardness. The optimum mechanical performance occurs at Ti60-Al-Cr-Nb-V MEA with tensile yield strength of 1009 MPa, fracture strength of 1223 MPa, and plastic strain of 27.1%. In summary. the Ti60-Al-Cr-Nb-V MEA not only possesses higher mechanical properties than the commercial Ti6Al4V alloy, but also has similar density, wear resistance, and oxidation behavior to commercial Ti alloys. Therefore, it is believed that the Ti60-Al-Cr-Nb-V MEA can be a promising light-weight structure material for the applications of transportation vehicles and sport equipment.

    總目錄 摘要 i Abstract ii 總目錄 vi 表目錄 xi 圖目錄 xiii 第一章 緒論 1 1-1前言 1 1-2研究目的 1 第二章 文獻回顧 3 2-1高熵合金之發展 3 2-1-1高熵合金定義 3 2-2 高熵合金之固溶體形成條件 4 2-3 高熵合金四大效應[13] 6 2-3-1高熵效應 6 2-3-2晶格應變效應 8 2-3-3延遲擴散效應 8 2-3-4雞尾酒效應 9 2-4 高熵合金之特性 9 2-5 機械行為之影響因素 11 2-5-1晶體結構 11 2-5-2固溶強化 11 2-6 高熵合金之成分設計 12 2-6-1低密度高熵合金 12 2-6-2非等量成分設計 14 第三章 實驗方法與步驟 21 3-1 合金設計之相關參數計算 21 3-2 高熵合金試片製備 21 3-2-1 合金成分配製 22 3-2-2 合金熔煉 22 3-2-3 高熵合金板材製作-墜落式鑄造 22 3-3 合金密度量測 23 3-4 高熵合金微觀組織分析 23 3-4-1 X光繞射儀(XRD) 23 3-4-2光學顯微鏡(Optical Microscopy) 24 3-4-3 掃描式電子顯微鏡(SEM) 24 3-4-4 能量散射光譜儀(EDS) 24 3-4-5 穿透式電子顯微鏡(TEM) 25 3-5 熱性質分析 25 3-5-1熱示差掃描熱量分析(DSC) 25 3-5-2均質化熱處理 26 3-5-3氧化測試 26 3-6 機械性質分析 26 3-6-1試片製作 26 以3-6-2維氏硬度分析 27 3-6-3壓縮測試分析 27 3-6-4拉伸測試分析 28 3-6-5耐磨耗測試 29 3-7電化學分析 29 第四章 結果與討論 46 4-1 合金成份設計-四元合金系列 46 4-1-1固溶體之相關參數計算 46 4-1-2 X-ray繞射分析 48 4-1-3 機械性質分析 48 4-2 合金成份設計-五元合金系列 49 4-2-1固溶體之相關參數計算 50 4-2-2 X-ray繞射分析 50 4-2-3 硬度分析 51 4-3 晶格常數 51 4-4 合金密度 52 4-5 CALPHAD之相圖模擬計算 52 4-6 均質化熱處理溫度之選擇 53 4-7微觀組織分析 53 4-7-1合金試片之表面形貌觀察 53 4-7-2成分分析 54 4-8 X-ray繞射分析 54 4-9 機械性質分析 54 4-9-1硬度分析 54 4-9-2壓縮測試分析 55 4-9-3拉伸測試分析 55 4-9-4磨耗分析 56 4-10 OM微觀結構分析 57 4-11 TEM分析 57 4-12 電化學分析 57 4-13 氧化測試分析 58 第五章 結論 88 第六章 參考文獻 89 表目錄 表3-1 相關元素之混合焓 (J/mol) 31 表3-2所選取元素之基本性質 31 表3-3 Ti50合金元素系列表 32 表4-1合金設計之固溶體形成相關參數表 60 表4-2 Ti50合金系列之硬度值 61 表4-3 Ti50Al25Nb25-xCrx合金之壓縮性質測試 61 表4-4 Ti60合金元素系列表 62 表4-5合金設計之固溶體形成相關參數表 62 表4-6 Ti60合金系列之硬度值 62 表4-7不同合金系列之晶格常數 63 表4-8合金密度量測結果 64 表4-9熱性質分析結果 65 表4-10 Ti60Al10(NbVCr)30合金之EDS成分分析 65 表4-11 Ti60Al16(NbVCr)24合金之EDS成分分析 65 表4-12 Ti60Al10(NbVCr)30及Ti60Al16(NbVCr)24合金熱處理前後硬度值 65 表4-13 Ti60Al10(NbVCr)30及Ti60Al16(NbVCr)24合金熱處理前後壓縮性質 66 表4-14 Ti60Al10(NbVCr)30及Ti60Al16(NbVCr)24合金熱處理前後拉伸性質 66 表4-15 磨耗測試結果 67 表4-16電化學測試結果 67 表4-17 不同時間於600℃持溫之氧化測試結果 67 圖目錄 圖2-1合金成分配置示意圖 15 圖2-2 二元至七元Cu-Ni-Al-Co-Cr-Fe-Si合金之X光繞射分析 15 圖2-3不同合金數目與混合熵值對照圖 16 圖2-4 (左)單一元素之簡單固溶結構;(右)高熵合金之複雜固溶結構 16 圖2-5 (a)單一元素之X光繞射;(b)高熵合金之X繞射 17 圖2-6 AlCoCrCuFeNi 合金鑄造態下的TEM微結構影像 17 圖2-7 Fe、Co、Ni、Cr、Mn在不同基地下的活化能比較 18 圖2-8 AlxCoCrCuFeNi合金隨Al含量變化之硬度曲線圖 19 圖2-9 BCC結構之CrMnFiCoNi合金於不同溫度下之機械性質 19 圖2-10 Nb25Mo25Ta25W25及V20Nb20Mo20Ta20W20於不同退火溫度下之壓縮性質 20 圖3-1合金試片製作及實驗分析流程圖 33 圖3-2 電弧融煉爐(大arc) 34 圖3-3 電弧融煉爐使用之氬焊機(大arc) 34 圖3-4 電弧融煉 35 圖3-5 合金鑄錠樣貌 35 圖3-6 噴砂機 36 圖3-7 墜落式鑄造電弧融煉爐(小arc) 36 圖3-8 電弧融煉爐使用之氬焊機(小arc) 37 圖3-9合金板材 37 圖3-10 X-ray繞射分析儀(XRD) 38 圖3-11 光學顯微鏡(OM) 38 圖3-12超高解析冷場發射掃描式電子顯微鏡(SEM) 39 圖3-13 能量分散質譜儀(EDS) 39 圖3-14 穿透式電子顯微鏡(TEM, JEOL, JEM-2100) 40 圖3-15 聚焦離子束(FIB, FEI, Versa3D) 40 圖3-16 高溫熱卡掃描分析儀(DSC) 41 圖3-17 真空管狀加熱爐 41 圖3-18 維式硬度機 42 圖3-19 壓縮試片 42 圖3-20 萬能試驗機(MTS) 43 圖3-21 拉伸試片 43 圖3-22 磨耗測試儀 44 圖3-23 腐蝕測試之襄埋試片 44 圖3-24 恆電位儀(Autolab PGStat 302) 45 圖4-1 Ti50Al25V25-XCrX系列之X光繞射結果 68 圖4-2 Ti50Al25Nb25-XCrX系列之X光繞射結果 68 圖4-3 Ti50Al45-XNbXCr5系列之X光繞射結果 69 圖4-4 Ti50Al25Nb25-XCrX與Ti50Al25V25-XCrX系列之硬度測試結果 69 圖4-5 Ti50Al25Nb25-XCrX合金壓縮測試結果 70 圖4-6 Ti50Al45-XNbXCr5系列之硬度測試結果 70 圖4-7 Ti60Al40-X(NbVCr)X系列之X光繞射結果 71 圖4-8 Ti60Al40-X(NbVCr)X系列之硬度測試結果 71 圖4-9 Ti60Al40-X(NbVCr)X合金成分之CALPHAD相圖模擬結果 72 圖4-10 Ti60Al10(NbVCr)30合金之DSC曲線 73 圖4-11 Ti60Al16(NbVCr)24合金之DSC曲線 73 圖4-12 Ti60Al10(NbVCr)30合金之鑑定區域及mapping鑑定結果 74 圖4-13 Ti60Al16(NbVCr)24合金之鑑定區域及mapping鑑定結果 75 圖4-14 Ti60Al10(NbVCr)30的X光繞射結果 76 圖4-15 Ti60Al16(NbVCr)24的X光繞射結果 76 圖4-16不同合金熱處理前後硬度值 77 圖4-17合金試片壓縮前後對照圖,(左)壓縮前;(右)壓縮後 77 圖4-18 Ti60Al10(NbVCr)30合金熱處理前後壓縮測試結果 78 圖4-19 Ti60Al16(NbVCr)24合金熱處理前後壓縮測試結果 78 圖4-20合金試片拉伸前後對照圖,(左)拉伸前;(右)拉伸後 79 圖4-21 Ti60Al10(NbVCr)30及Ti60Al16(NbVCr)24合金熱處理前後拉伸結果 79 圖4-22 Ti60Al40-X(NbVCr)X合金拉伸測試結果 80 圖4-23 Ti60Al10(NbVCr)30合金之破斷面: (a)100倍,(b)1000倍 81 圖4-24 Ti60Al10(NbVCr)30合金之破斷側面: (a)100倍,(b)500倍 81 圖4-25 Ti60Al16(NbVCr)24合金之破斷面: (a)100倍,(b)1000倍 82 圖4-26 Ti60Al16(NbVCr)24合金之破斷側面: (a)200倍,(b)500倍 82 圖4-27 Ti60Al10(NbVCr)30、Ti60Al16(NbVCr)24以及Ti6Al4V磨耗結果 83 圖4-28 Ti60Al10(NbVCr)30合金經腐蝕後之表面: (a)50倍,(b)100倍 84 圖4-29 Ti60Al16(NbVCr)24合金經腐蝕後之表面: (a)50倍,(b)100倍 84 圖4-30 Ti60Al10(NbVCr)30合金之TEM影像圖 85 圖4-31 Ti60Al10(NbVCr)30合金zone axis [133]之diffraction pattern 85 圖4-32 Ti60Al10(NbVCr)30合金之(a)明視野(b)暗視野 86 圖4-33 不同材料在3.5wt%氯化鈉水溶液之動態極化曲線 87 圖4-34 不同材料在600˚C下持溫12小時的重量變化曲線圖 87

    [1] ASM International. Handbook Committee, “Properties and Selection : Irons, Steels, and High-Performance Alloys”, Vol. 1, Materials Park, OH : ASM International, 1990.
    [2] ASM International. Handbook Committee, “Properties and Selection: Nonferrous Alloys and Special-Purpose Materials”, Vol. 2, Materials Park, OH : ASM International, 1990.
    [3] J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau and S. Y. Chang, “Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes”, ADVANCED ENGINEERING MATERIALS, Vol. 6, pp. 299-303, 2004.
    [4] X. Yang, Y. Zhang and P. K. Liaw, “Microstructure and Compressive Properties of NbTiVTaAlx High Entropy Alloys”, Procedia Engineering, Vol. 36, pp. 292-298, 2012.
    [5] O. N. Senkov, J. M. Scott, S. V. Senkova, D. B. Miracle, C. F. Woodward, “Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy”, Journal of Alloys and Compounds, Vol. 509, pp. 6043-6048, 2011.
    [6] L. Lilensten, J. Couzinié, L. Perrière, J. Bourgon, N. Emery and I. Guillot, “New structure in refractory high-entropy alloys”, Materials Letters, Vol. 132, pp.123-125.
    [7] B. Cantor, I. T. H. Chang, P. Knight and A. J. B. Vincent, “Microstructural development in equiatomic multicomponent alloys”, Materials Science and Engineering A, Vols. 375-377, pp. 213-218, 2004.
    [8] Y. Deng, C. C. Tasan, K.G. Pradeep, H. Springer, A. Kostka and D. Raabe, “Design of a twinning-induced plasticity high entropy alloy”, Acta Materialia, Vol. 94, pp.124-133, 2015.
    [9] C. C. Tasan, Y. Deng, K. G. Pradeep, M. J. Yao, H. Springer and D. Raabe, “Composition Dependence of Phase Stability, Deformation Mechanisms, and Mechanical Properties of the CoCrFeMnNi High-Entropy Alloy System”, The Minerals, Metals & Materials Society, Vol. 66, pp. 1993-2001, 2014.
    [10] M. J. Yao, K. G. Pradeep, C. C. Tasan and D. Raabe, “A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility”, Scripta Materialia, Vols. 72-73, pp. 5-8, 2014.
    [11] K. G. Pradeep, C. C. Tasan, M. J. Yao, Y. Deng, H. Springer and D. Raabe, “Non-equiatomic High entropy alloys: Approach towards rapid alloy screening and property-oriented design”, Author’s Accepted Manuscript, Vol. 648, pp. 183-192, 2015.
    [12] D. C. Ma, M. J. Yao, K. G. Pradeep, C. C. Tasan, H. Springer and D. Raabe, “Phase stability of non-equiatomic CoCrFeMnNi high entropy alloys”, Acta Materialia, Vol. 98, pp. 288-296, 2015.
    [13] 葉均蔚, 高熵合金的發展, 華岡工程學報, Vol. 27, pp. 1-18, 2003.
    [14] R. Cahn and P. Haasen, “Physical metallurgy”, 4th ed, Amsterdam: North-Holland.
    [15] Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen and P. K. Liaw, “Solid-Solution Phase Formation Rules forMulti-component Alloys”, ADVANCED ENGINEERING MATERIALS, Vol. 10, pp. 534-538, 2008.
    [16] X. Yang, Y. Zhang, “Prediction of high-entropy stabilized solid-solution in multi-component alloys”, Materials Chemistry and Physics, Vol. 132, pp. 233-238, 2012.
    [17] S. Guo, C. T. Liu, “Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase”, Progress in Natural Science: Materials International, Vol. 21, pp. 433-446, 2011.
    [18] A. Takeuchi and A. Inoue, “Quantitative evaluation of critical cooling rate for metallic glasses”, Materials Science and Engineering: A, Vols. 304-306, pp.446-451, 2001.
    [19] A. R. Miedema, P. F. de Châtel and F. R. de Boer, “Cohesion in alloys — fundamentals of a semi-empirical model”, Physica B+C, Vol. 100, pp. 1-28, 1980.
    [20] C. S. Wu, P. H. Tsai, C. M. Kuo and C. W. Tsai, “Effect of Atomic Size Difference on the Microstructure and Mechanical Properties of High-Entropy Alloys”, Entropy, Vol. 20, pp. 967, 2018.
    [21] J. W. Yeh, S. Y. Chang, Y. D. Honga, S. K. Chenc and S. J. Lin, “Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements”, Materials Chemistry and Physics, Vol. 103, pp. 41-46, 2007.
    [22] D. Gaskell, “Introduction to the thermodynamics of materials”, 3rd ed, Washington: Taylor & Francis, pp. 80-84, 1995.
    [23] R. Swalin, “Thermodynamics of solids”, 2nd ed, New York: Wiley, pp. 35-41, 1972.
    [24] Y. Zhou, D. Zhou, X. Jin, L. Zhang, X. Du and B. Li, “Design of non-equiatomic medium-entropy alloys”, SCIENTIFIC REPORTS, Vol. 8, pp. 1-9, 2018.
    [25] Q. He and Y. Yang, “On Lattice Distortion in High Entropy Alloys”, Frontiers in Materials, Vol. 5, pp. 1-8, 2018.
    [26] K. Y. Tsai, M. H. Tsai and J. W. Yeh, “Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys”, Acta Materialia, Vol. 61, pp. 4887-7897, 2013.
    [27] S. Ranganathan, “Alloyed pleasures: Multimetallic cocktails”, CURRENT SCIENCE, Vol. 85, pp. 1404-1406, 2003.
    [28] L. S. Zhang, G. L. Ma, L. C. Fu and J. Y. Tian, “Recent Progress in High-entropy Alloys”, Advanced Materials Research, Vols. 631-632, pp. 227-232, 2013.
    [29] W. Kai, F. P. Cheng, C. Y. Liao, C. C. Li, R. T. Huang and J. J. Kai, “The oxidation behavior of the quinary FeCoNiCrSix high-entropy alloys”, Materials Chemistry and Physics, Vol. 210, pp. 362-369, 2018.
    [30] J. Dąbrowa, G. Cieślak, M. Stygar, K. Mroczka, K. Berent, T. Kulik and M. Danielewski, “Influence of Cu content on high temperature oxidation behavior of AlCoCrCuxFeNi high entropy alloys (x = 0; 0.5; 1)”, Intermetallics, Vol. 84, pp. 52-61, 2017.
    [31] J. M. Wu, S. J. Lin, J. W. Yeh, S. K. Chen, Y. S. Huang and H. C. Chen, “Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content”, Wear, Vol. 261, pp. 513-519, 2006.
    [32] B. Gludovatz, A. Hohenwarter, D. Catoor, E. H. Chang, E. P. George and R. O. Ritchie, “A fracture-resistant high-entropy alloy for cryogenic applications”, METAL ALLOYS, Vol. 345, pp. 1153-1158, 2014.
    [33] J. Y. He, C. Zhu, D. Q. Zhou, W. H. Liu, T. G. Nieh and Z. P. Lu, “Steady state flow of the FeCoNiCrMn high entropy alloy at elevated temperatures”, Intermetallics, Vol. 55, pp. 9-14, 2014.
    [34] B. F. Wang, X. R. Yao, C. Wang, X. Y. Zhang and X. X. Huang, “Mechanical Properties and Microstructure of a NiCrFeCoMn High-Entropy Alloy Deformed at High Strain Rates”, Entropy, Vol. 20, pp. 892, 2018.
    [35] C. W. Tsai, M. H. Tsai, J. W. Yeh and C. C. Yang, “Effect of temperature on mechanical properties of Al0.5CoCrCuFeNi wrought alloy”, Journal of Alloys and Compounds, Vol. 490, pp. 160-165, 2010.
    [36] O. N. Senkov, G. B. Wilks, J. M. Scott, and D. B. Miracle, “Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys”, Intermetallics, Vol. 19, pp. 698-706, 2011.
    [37] W. D. Callister, D. G. Rethwisch, “Materials Science and Engineering”, Vol. 8, John Wiley & Sons Ltd, 2011.
    [38] C. Y. Hsu, W. R. Wang, W. Y. Tang, S. K. Chen and J. W. Yeh, “Microstructure and Mechanical Properties of New AlCoxCrFeMo0.5Ni High-Entropy Alloys”, ADVANCED ENGINEERING MATERIALS, Vol. 12, pp.44-49, 2010.
    [39] A. M. Giwa, P. K. Liaw, K. A. Dahmen and J. R. Greer, “Microstructure and small-scale size effects in plasticity of individual phases of Al0.7CoCrFeNi High Entropy alloy”, Extreme Mechanics Letters, Vol. 8, pp. 220-228, 2016.
    [40] Y. J. Zhou, Y. Zhang, Y. L. Wang and G. L. Chen, “Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties”, Applied Physics Letters, Vol. 90, pp. 181904, 2007.
    [41] Z. W. Wang, I. Baker, Z. Cai, S. Chen, J. D. Poplawsky and W. Guo, “The effect of interstitial carbon on the mechanical properties and dislocation substructure evolution in Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys”, Acta Materialia, Vol. 120, pp. 228-239, 2016.
    [42] Z. M. Li, C. C. Tasan, H. Springer, B. Gault, and D. Raabe, “Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys”, Scientific Reports, Vol. 7, pp. 1-7, 2017.
    [43] L. B. Chen, R. Wei, K. Tang, J. Zhang, F. Jiang, L. He and J. Sun, “Heavy carbon alloyed FCC-structured high entropy alloy with excellent combination of strength and ductility”, Materials Science & Engineering A, Vol. 716, pp. 150-156, 2018.
    [44] W. J. Joost, “Reducing Vehicle Weight and Improving U.S. Energy Efficiency Using Integrated Computational Materials Engineering”, the journal of the Minerals, Metals & Materials Society, Vol. 64, pp. 1032-1038, 2012.
    [45] E. Schubert, M. Klassen, I. Zerner, C. Walz and G. Sepold, “Light-weight structures produced by laser beam joining for future applications in automobile and aerospace industry”, Journal of Materials Processing Technology, Vol. 115, pp. 2-8, 2001.
    [46] K. K. Tseng, Y. C. Yang, C. C. Juan, T. S. Chin, C. W. Tsai and J. W. Yeh, “A light-weight high-entropy alloy Al20Be20Fe10Si15Ti35”, Science China Technological Sciences, Vol. 61, pp. 184-188, 2018.
    [47] R. Li, J. C. Gao and K. Fan, “Microstructure and mechanical properties of MgMnAlZnCu high entropy alloy cooling in three conditions”, Materials Science Forum, Vol. 686, pp. 235-241, 2011.
    [48] R. Li, J. C. Gao and K. Fan, “Study to microstructure and mechanical properties of Mg containing high entropy alloys”, Materials Science Forum, Vol. 650, pp. 265-271, 2010.
    [49] K. M. Youssef, A. J. Zaddach, C. Niu, D. L. Irving and C. C. Koch, “A Novel Low-Density, High-Hardness, High-entropy Alloy with Close-packed Single-phase Nanocrystalline Structures”, Materials Research Letters, Vol. 3, pp. 95-99, 2014.
    [50] X. J. Huang, J. Miao and A. A. Luo, “Lightweight AlCrTiV high-entropy alloys with dualphase microstructure via microalloying”, Journal of Materials Science, Vol. 54, pp. 2271-2277, 2019.
    [51] O. N. Senkov, S. V. Senkova, C. Woodward and D. B. Miracle, “Low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system: Microstructure and phase analysis”, Acta Materialia, Vol.61, pp.1545-1557, 2013.
    [52] O. N. Senkov, S. V. Senkova, D. B. Miracle and C. Woodward, ”Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system”, Materials Science and Engineering, Vol. 565, pp. 51-62, 2013.
    [53] N. D. Stepanov, N. Y. Yurchenko, D. G. Shaysultanov, G. A. Salishchev, and M. A. Tikhonovsky, “Effect of Al on structure and mechanical properties of AlxNbTiVZr (x = 0, 0.5, 1, 1.5) high entropy alloys”, Materials Science and Technology, Vol. 31, pp. 1184-1193, 2015.
    [54] F. Otto, Y. Yang, H. Bei and E. P. George, “Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys”, Acta Materialia, Vol. 61, pp. 2628-2638, 2013.
    [55] O. N. Senkov, J. D. Miller, D. B. Miracle and C. Woodward, “Accelerated exploration of multi-principal element alloys with solid solution phases”, NATURE COMMUNICATIONS, Vol. 6, pp. 1-10, 2015.
    [56] R. Feng, M. C. Gao, C. Lee, M. Mathes, T. Zuo, S. Chen, J. A. Hawk, Y. Zhang and P. K. Liaw, “Design of Light-Weight High-Entropy Alloys”, Entropy, Vol. 18, p. 333, 2016.
    [57] S. Ma, J. Procházka, P. Karvánková, Q. Ma, X. Niu, X. Wang, D. Ma, K. Xu and S. Vepřek, “Comparative study of the tribological behaviour of superhard nanocomposite coatings nc-TiN/a-Si3N4 with TiN”, Surface and Coatings Technology, Vol. 194, pp. 143-148, 2005.
    [58] M. A. Amin, N. E. Bagoury, M. Saracoglu and M. Ramadan, “Electrochemical and Corrosion Behavior of cast Re-containing Inconel 718 Alloys in Sulphuric Acid Solutions and the Effect of Cl-”, International Journal of ELECTROCHEMICAL SCIENCE, Vol. 9, pp. 5352-5374, 2014.
    [59] S. Wang, Z. Chen, P. Zhang, K. Zhang, C.L. Chen and B.L. Shen, “Influence of Al content on high temperature oxidation behavior of AlxCoCrFeNiTi0.5 high entropy alloys”, Vacuum, Vol. 163, pp. 263-268, 2019.

    QR CODE
    :::