| 研究生: |
周俊宇 Jun-yu Zhou |
|---|---|
| 論文名稱: |
西南氣流實驗(IOP-8 個案)觀測分析與數值模擬:雲微物理結構特徵及參數法方案比較 |
| 指導教授: | 楊明仁 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 大氣科學學系 Department of Atmospheric Sciences |
| 論文出版年: | 2012 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 118 |
| 中文關鍵詞: | 雲微物理參數法 、雨水粒子濃度 |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究選用2008 年西南氣流實驗期間內IOP-8 個案的梅雨鋒面降水事件,分析密集觀測資料,並以WRF 模式進行模擬研究,模擬實驗中使用四個不同的微物理參數化方案(WDM6 方案、WSM6 方案、Morrison 方案和Thopmson 方案),希望比較各參數化方案對台灣地區梅雨鋒面降雨表現的特性。
在個案期間內梅雨鋒面系統位於台灣上空,在6 月14 日至6 月15 日間在台灣西南部地區產生大量降水,並觀測到強回波於台灣西南沿海。在模擬結果上,綜觀環境場與觀測類似,但副熱帶高壓有偏弱的情形,但模式有表現出在台灣西南部的降水系統。雖然降水系統發展整體有延遲的現象,但四個微物理方法都模擬出與觀測類似的回波雨帶登陸位置及強度。比較S-POL 雷達的觀測分析,四組實驗在台灣西南部都可掌握到兩條回波雨帶的特徵。比較12 小時的台灣地區平均累計降水,以WDM6 及WSM6 方案的模擬降水量較接近於觀測,Morrison 和Thompson 方案則高估了降雨量。
我們在這段時間內選用雨帶強回波期及弱回波期兩個時間點,分別進行雷達回波以及垂直速度CFAD 的比較。雷達回波CFAD 在所有方案的模擬結果上,都有偏高的趨勢,其中WDM6 模擬亮帶的特徵較為明顯,與觀測最為相似。垂直速度CFAD 剖面顯示模式對於上升氣流的模擬表現與觀測相似,但是下降氣流的部分則都有低估的現象。
使用S-POL 雷達模糊邏輯以判斷水相粒子分類,並與模擬進行比較,發現在水相粒子分類(PID)的垂直分佈上,Thompson 方案對於雲冰和雪的與觀測相差較大,主要由於Thompson 方案本身的粒徑譜調整與其他方案不同,所以產生過多的雪。WSM6方案由於沒有粒子濃度的預報,因此對雨水混合比的高度有所偏差,整體而言,PID 的分析是以Morrison 及WDM6 方案是較接近觀測分析的結果。
模擬所使用的微物理參數方案中有三組是屬於Double moment 方案,共進行雨水粒子濃度的預報,因此與西南氣流實驗中的地面撞擊式雨滴儀(JWD)的雨滴觀測資料做比較分析。由時序變化圖的結果來看,模擬結果延遲了兩個小時,但WDM6 方案模擬的變化情形與觀測較為一致。最終本次個案的模擬結果上,以WDM6 方案表現得與觀測分析最為接近。
In this study, a typical case for heavy rainfall associated Mei-Yu front on 14-15 June 2008, also categorized as the IOP-8 event during the SoWMEX. We analyzed the observation data and compared with the WRF model simulations. One single moment microphysics scheme (WSM6) and three double moment microphysics schemes (WDM6, Morrison, Thompson) are chosen to perform sensitivity tests, in order to evaluate different schemes ability to simulate the Mei-Yu frontal rainfall near Taiwan area.
This rainfall case produced heavy precipitation over southern and southwestern Taiwan, that associated with the interactions of the Mei-Yu front and the orographic
over southern Taiwan. The WRF-simulated synoptic field, wind pattern and geopotential height were consistent but the subtropical high weaker than observation. Radar echoes show the precipitation system encountered southern Taiwan, and all the experiments simulated two rain bands were similar with S-pol (S band dual-polarization Doppler radar) radar observation but delayed 2 hours.
Reflectivity CFAD (Contoured frequency with altitude diagrams) of four microphysics simulations compared with CFAD of S-pol radar echoes were all overestimated. WDM6 simulated bright bands were more obvious than other
schemes. Vertical velocity CFAD show that four schemes simulated updraft was similar to observation, but downdraft underestimated in all simulations.
We compared with the PID (Particle Identification) vertical percentage distribution of observational analysis and simulations, the Thompson simulated produced unreasonable amount of snow because of power-law droplet size distribution; WSM6 scheme produced more amount of rainwater at high levels which without forecasting rainwater number concentration. Morrison and WDM6
scheme is not biased toward a specific type of hydrometer.
We analzed the JWD (Joss-Waldvogel disdrometer) data and compared with the model simulated rainwater number concentration time series. WDM6 schemes simulated time series show the most similar evolution to observation analysis.
Finally, WDM6 simulation was the most reasonable, but still need to consider the model error, and the error of the observations.
參考文獻
黃竹君, 2012:氣膠衝擊颱風之模擬 - 納莉颱風(2001), 台灣大學理學院大
氣科學研究所碩士論文。
錢伊筠, 2010: WRF 模式Double-moment 雲微物理參數化法對於SoWMEX
IOP-4 個案降水模擬之敏感度研究,中央大學大氣物理研究所碩士論
文。
西南氣流實驗(SoWMEX/TiMREX)資料取自 http://sowmex.cwb.gov.tw/2008/
Armijo, L., 1969: A theory for the determination of wind and
precipitation velocities with Doppler radars. J. Atmos. Sci., 26, 570–
573.
Brandes, E. A., G. Zhang, and J. Sun, 2006: On the influence of assumed
drop size distribution form on radar retrieved thunderstorm
microphysics,J. Appl. Meteorol. Climatol., 45, 259-268,
doi:10.1175/JAM2335.1.
Chen, J.-P., and S.-T. Liu, 2004: Physically-based two-moment bulk-water
parameterization for warm cloud microphysics. Q. J. Royal Meteor.
Soc., 130, Part A, 51-78
Cohard, J.-M., and J.-P. Pinty, 2000: A comprehensive two-moment
warm microphysical bulk scheme. : Description and tests.
Quart. J. Roy. Meteor. Soc., 126, 1815-1842.
Cooper, W. A., 1986: Ice initiation in natural clouds. Precipitation
Enhancement—A Scientific Challenge, Meteor. Monogr., No. 43,
Amer. Meteor. Soc., 29–32.
Curry, J. A., 1986: Interactions among turbulence, radiation, and
microphysics in Arctic stratus clouds. J. Atmos. Sci., 43, 90–106.
____, and Coauthors, 2000: FIRE Arctic Clouds Experiment. Bull.
Amer. Meteor. Soc., 81, 5–29.
Doviak, R. J., Peter S. R., Richard G. Strauch and Miller.L., 1976: Error
Estimation in Wind Fields Derived from Dual-Doppler Radar
Measurement. J. Applied Meteor, 15, 868–878.
Dudhia, J., 1989: Numerical study of convection observed during the
winter monsoon experiment using a mesoscale two-dimensional
model. J. Atmos. Sci., 46, 3077–3107.
Feingold, G., B. Stevens, W. R. Cotton, and R. L. Walko, 1994:An explicit
cloud microphysical/LES model designed to simulate the Twomey
effect. Atmos. Res., 33, 207–233.
Ferrier, B. S., 1994: A double-moment multiple-phase four-class bulk ice
scheme. Part I: Description. J. Atmos. Sci., 51, 249–280.
Fletcher, N. H., 1962: The physics of rain clouds. Cambridge Univ. Press,
390pp.
Fowler, L. D., D. A. Randall, and S. A. Rutledge, 1996: Liquid and ice
microphysics in the CSU General Circulation Model. Part 1: Model
description and simulated microphysical processes. J. Climate, 9,
489–529.
Gao, W., C.-H. Sui, T.-C. Chen Wang, and W.-Y. Chang, 2011: An
evaluation and improvement of microphysical parameterization
from a two-moment cloud microphysics scheme and the Southwest
Monsoon Experiment (SoWMEX)/Terrain influenced Monsoon
Rainfall Experiment (TiMREX) observations, J. Geophys. Res., 116.
doi:10.1029/2011JD015718.
Ghan, S. J., and R. C. Easter, 1992: Computationally efficient
approximations to stratiform cloud microphysics parameterization.
Mon. Wea. Rev., 120, 1572–1582.
Girard, E., and J. A. Curry, 2001: Simulation of Arctic low-level clouds
observed during the FIRE Arctic Clouds Experiment using a new bulk
microphysics scheme. J. Geophys. Res., 106, 15 139–15 154.
Grell, G. A., and D. Devenyi ,2002: A generalized approach to
parameterizing convection combining ensemble and data
assimilation techniques. Geophys. Res. Lett., 29, 1693.
doi:10.1029/2002GL015311.
Gunn, R. and G.D. Kinzer, 1949: The terminal velocity of fall for droplets
in stagnant air. J. Meteor., 6, 243-248.
Harrington, J. Y., M. P. Meyers, R. L. Walko, and W. R. Cotton, 1995:
Parameterization of ice crystal conversion process due to vapor
deposition for mesoscale models using doublemoment basis
functions. Part I: Basic formulation and parcel model results. J.
Atmos. Sci., 52, 4344–4366.
Hong, Song-You, Hua-Lu Pan, 1996: Nonlocal boundary layer vertical
diffusion in a medium-range forecast model. Mon. Wea. Rev., 124,
2322-2339.
____, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice
microphysical processes for the bulk parameterization of clouds
and precipitation. Mon. Wea. Rev., 132, 103–120.
____, and J.-O. J. Lim, 2006: The WRF single-moment 6-class
microphysics scheme. Journal of the Korean Meteorological society,
42, 129–151.
____, and K.-S. S. Lim, 2009: The WRF double-moment cloud
microphysics scheme (WDM). Proc. The Third East Asia WRF
Workshop and Tutorial, Seoul, South Korea, Joint Center for
High-Impact Weather and Climate Research, 14.
Houze, R. A., P. V. Hobbs, P. H. Herzegh, and D. B. Parsons, 1979: Size
distributions of precipitation particles in frontal clouds. J. Atmos.
Sci., 36, 156–162.
Jiang, H., W. R. Cotton, J. O. Pinto, J. A. Curry, and M. J. Weissbluth,
2000: Cloud resolving simulations of mixed-phase arctic stratus
observed during BASE: Sensitivity to concentration of ice crystals
and large-scale heat and moisture advection. J. Atmos. Sci., 57,
2105–2117.
____, G. Feingold, W. R. Cotton, and P. G. Duynkerke, 2001: Large-eddy
simulation of entrainment of cloud condensation nuclei into the
arctic boundary layer: May 18, 1998 FIRE/SHEBA case study. J.
Geophys. Res., 106, 15 113–15 122.
Kessler, E., III, 1969: On the distribution and continuity of water
substance in atmospheric circulations. Meteor. Monogr., No. 32,
Amer. Meteor. Soc., 84 pp.
Khvorostyanov, V. I., 1995: Mesoscale processes of cloud formation,
cloud-radiation and their modeling with explicit microphysics. Atmos.
Res., 39, 1–67.
Kruger, S. K., Q. Fu, K. N. Liou, and H.-N. S. Chin, 1995: Improvements
of an ice-phase microphysics parameterization in numerical
simulations of tropical convection. J. Appl. Meteor., 34, 281–287.
Lang, S. E., W.-K. Tao, X. Zeng, and Y. Li, 2011: Reducing the biases in
simulated radar reflectivities from a bulk microphysics scheme:
Tropical convective systems. J. Atmos. Sci., 68, 2582–2598.
Lhermitte, R. M., and L. J. Miller, 1970: Doppler radar methodology
for the observation of convective storms. Preprints, 14th Conf.
on Radar Meteorology, Tucson, AZ, Amer. Meteor. Soc., 133–
138.
Lim K.-S. S., and S.-Y. Hong, 2010: Development of an effective
double-moment cloud microphysics scheme with prognostic cloud
condensation nuclei (CCN) for weather and climate Models. Mon.
Wea. Rev.,138, 1587-1612.
Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of
the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065–
1092.
Marshall, J. S., and W. M. Palmer, 1948: The distribution of raindrops
with size. J. Meteor., 5, 165–166.
McCumber, M., W. K. Tao, J. Simpson, R. Penc, and S. T. Soong, 1991:
Comparison of ice-phase microphysical parameterization schemes
using numerical simulations of convection. J. Appl. Meteor., 30, 985–
1004.
Meyers, R. L. Walko, J. Y. Harrington, and W. R. Cotton, 1997: New RAMS
cloud microphysics parameterization. Part II: The two-moment
scheme. Atmos. Res., 45, 3–39.
Miller, L. J., and R. G. Strauch, 1974: A dual Doppler radar method
for the determination of wind velocities within precipitating
weather systems. Remote Sens. Environ., 3, 219–235.
Mlawer, E. J., and S. A. Clough, 1997: On the extension of RRTM to the
shortwave region. In Proceedings of the Sixth Atmospheric
Measurement (ARM) Science Team Meeting, CONF-9603149,
pp.223-226. U.S. Department of Energy, Washington, D.C.
Molthan, A. L. and B. A. Colle, 2012: Comparisons of single- and
double-moment microphysics schemes in the simulation of a
synoptic-scale snowfall event. Mon. Wea. Rev., 140, 2982–3002.
Morrison, H., and J. O. Pinto, 2006: Intercomparison of bulk cloud
microphysics schemes in mesoscale simulations of springtime Arctic
mixed-phase stratiform clouds. Mon. Wea. Rev., 134, 1880–1900.
____, and A. Gettelman, 2008: A new two-moment bulk stratiform cloud
microphysics scheme in the Community Atmosphere Model,
version 3 (CAM3). Part I: Description and numerical tests. J. Climate,
21, 3642–3659.
____, J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment
microphysics scheme for application in cloud and climate models.
Part 1: Description. J. Atmos. Sci., 62, 1665–1677.
____, J. A. Curry, M.D. Shupe, and P. Zuidema, 2005: A new
double-moment microphysics parameterization for application in
cloud and climate models. Part II: Single-column modeling of arctic
clouds. J. Atmos. Sci., 62, 1678–1693.
____, G. Thompson, V. Tatarskii, 2009: Impact of cloud microphysics on
the development of trailing stratiform precipitation in a simulated
squall line: Comparison of one- and two-moment schemes. Mon.
Wea. Rev., 137, 991-1007.
____, and G. H. Bryan, 2011: Sensitivity of a simulated squall line to
horizontal resolution and parameterization of microphysics, Mon.
Wea. Rev. accepted. (check for early online release)
Reisner, J., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit
forecasting of supercooled liquid water in winter storms using
the MM5 forecast model. Quart. J. Roy. Meteor. Soc., 124,
1071–1107.
Rutledge, S. A., and P. V. Hobbs, 1984: The mesoscale and microscale
structure and organization of clouds and precipitation in
mid-latitude cyclones. XII: A diagnostic modeling study of
precipitation development in narrow cold-frontal rainbands. J.
Atmos. Sci., 41, 2949–2972.
Stevens, B., G. Feingold, W. R. Cotton, and R. L. Walko, 1996: Elements
of the microphysical structure of numerically simulated
nonprecipitating stratocumulus. J. Atmos. Sci., 53, 980–1006.
Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit
forecasts of winter precipitation using an improved bulk
microphysics scheme. Part I: Description and sensitivity analysis.
Mon. Wea. Rev., 132, 519–542.
____, R. M. Rasmussen, and K. Manning, 2008: Explicit forecasts of
winter precipitation using an improved bulk microphysics scheme.
Part II: Implementation of a new snow parameterization. Mon.
Wea.Rev., 136, 5095–5115.
Tripoli, G. J., and W. R. Cotton, 1980: A numerical investigation of
several factors contributing to the observed variable intensity of
deep convection over south Florida. J. Appl. Meteor., 19, 1037-
1063.
Vivekanandan, J., S. M. Ellis, R. Oye, D. S. Zrnic, A. V. Ryzhkov, and J.
Straka, 1999: Cloud microphysics retrieval using S-band
dual-polarization radar measurements. Bulletin of the American
Meteorological Society, 80, 381-388
Walko, R. L., W. R. Cotton, M. P. Meyers, and J. Y. Harrington, 1995: New
RAMS cloud microphysics parameterization. Part I: The
single-moment scheme. Atmos. Res., 38, 29–62.
Wu, X., W. W. Grabowski, and M. W. Moncrieff, 1998: Long-term
behavior of cloud systems in TOGA COARE and their interactions
with radiative and surface properties. Part I: Twodimensional
modeling study. J. Atmos. Sci., 55, 2693–2714.
Xu, K.-M., and D. A. Randall, 1996: Explicit simulation of cumulus
ensembles with the GATE Phase III data: Comparison with
observations. J. Atmos. Sci., 53, 3710–3736.
Yuter, S. E., and R. A. Houze Jr., 1995: Three dimensional kinematic and
microphysical evolution of Florida cumulonimbus. Part II: Frequency
distributions of vertical velocity, reflectivity, and differential
reflectivity, Mon. Weather Rev., 123, 1941.1963.