跳到主要內容

簡易檢索 / 詳目顯示

研究生: 周俊宇
Jun-yu Zhou
論文名稱: 西南氣流實驗(IOP-8 個案)觀測分析與數值模擬:雲微物理結構特徵及參數法方案比較
指導教授: 楊明仁
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 大氣科學學系
Department of Atmospheric Sciences
論文出版年: 2012
畢業學年度: 101
語文別: 中文
論文頁數: 118
中文關鍵詞: 雲微物理參數法雨水粒子濃度
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究選用2008 年西南氣流實驗期間內IOP-8 個案的梅雨鋒面降水事件,分析密集觀測資料,並以WRF 模式進行模擬研究,模擬實驗中使用四個不同的微物理參數化方案(WDM6 方案、WSM6 方案、Morrison 方案和Thopmson 方案),希望比較各參數化方案對台灣地區梅雨鋒面降雨表現的特性。
    在個案期間內梅雨鋒面系統位於台灣上空,在6 月14 日至6 月15 日間在台灣西南部地區產生大量降水,並觀測到強回波於台灣西南沿海。在模擬結果上,綜觀環境場與觀測類似,但副熱帶高壓有偏弱的情形,但模式有表現出在台灣西南部的降水系統。雖然降水系統發展整體有延遲的現象,但四個微物理方法都模擬出與觀測類似的回波雨帶登陸位置及強度。比較S-POL 雷達的觀測分析,四組實驗在台灣西南部都可掌握到兩條回波雨帶的特徵。比較12 小時的台灣地區平均累計降水,以WDM6 及WSM6 方案的模擬降水量較接近於觀測,Morrison 和Thompson 方案則高估了降雨量。
    我們在這段時間內選用雨帶強回波期及弱回波期兩個時間點,分別進行雷達回波以及垂直速度CFAD 的比較。雷達回波CFAD 在所有方案的模擬結果上,都有偏高的趨勢,其中WDM6 模擬亮帶的特徵較為明顯,與觀測最為相似。垂直速度CFAD 剖面顯示模式對於上升氣流的模擬表現與觀測相似,但是下降氣流的部分則都有低估的現象。
    使用S-POL 雷達模糊邏輯以判斷水相粒子分類,並與模擬進行比較,發現在水相粒子分類(PID)的垂直分佈上,Thompson 方案對於雲冰和雪的與觀測相差較大,主要由於Thompson 方案本身的粒徑譜調整與其他方案不同,所以產生過多的雪。WSM6方案由於沒有粒子濃度的預報,因此對雨水混合比的高度有所偏差,整體而言,PID 的分析是以Morrison 及WDM6 方案是較接近觀測分析的結果。
    模擬所使用的微物理參數方案中有三組是屬於Double moment 方案,共進行雨水粒子濃度的預報,因此與西南氣流實驗中的地面撞擊式雨滴儀(JWD)的雨滴觀測資料做比較分析。由時序變化圖的結果來看,模擬結果延遲了兩個小時,但WDM6 方案模擬的變化情形與觀測較為一致。最終本次個案的模擬結果上,以WDM6 方案表現得與觀測分析最為接近。


    In this study, a typical case for heavy rainfall associated Mei-Yu front on 14-15 June 2008, also categorized as the IOP-8 event during the SoWMEX. We analyzed the observation data and compared with the WRF model simulations. One single moment microphysics scheme (WSM6) and three double moment microphysics schemes (WDM6, Morrison, Thompson) are chosen to perform sensitivity tests, in order to evaluate different schemes ability to simulate the Mei-Yu frontal rainfall near Taiwan area.
    This rainfall case produced heavy precipitation over southern and southwestern Taiwan, that associated with the interactions of the Mei-Yu front and the orographic
    over southern Taiwan. The WRF-simulated synoptic field, wind pattern and geopotential height were consistent but the subtropical high weaker than observation. Radar echoes show the precipitation system encountered southern Taiwan, and all the experiments simulated two rain bands were similar with S-pol (S band dual-polarization Doppler radar) radar observation but delayed 2 hours.
    Reflectivity CFAD (Contoured frequency with altitude diagrams) of four microphysics simulations compared with CFAD of S-pol radar echoes were all overestimated. WDM6 simulated bright bands were more obvious than other
    schemes. Vertical velocity CFAD show that four schemes simulated updraft was similar to observation, but downdraft underestimated in all simulations.
    We compared with the PID (Particle Identification) vertical percentage distribution of observational analysis and simulations, the Thompson simulated produced unreasonable amount of snow because of power-law droplet size distribution; WSM6 scheme produced more amount of rainwater at high levels which without forecasting rainwater number concentration. Morrison and WDM6
    scheme is not biased toward a specific type of hydrometer.
    We analzed the JWD (Joss-Waldvogel disdrometer) data and compared with the model simulated rainwater number concentration time series. WDM6 schemes simulated time series show the most similar evolution to observation analysis.
    Finally, WDM6 simulation was the most reasonable, but still need to consider the model error, and the error of the observations.

    致謝 ==================================================== i 目錄 ==================================================== ii 中文摘要 ================================================ iv 英文摘要 ================================================ v 圖表目錄 ================================================ vi 第一章 緒論 ============================================ 1 1 - 1 研究動機 ---------------------------------------1 1 - 2 文獻回顧 ---------------------------------------3 1 - 3 論文結構 ---------------------------------------5 第二章 資料來源與個案敘述 ============================= 6 2 - 1 觀測資料來源 -----------------------------------6 2 - 2 S-POL 雷達簡介 ---------------------------------6 2 - 3 撞擊式雨滴譜儀 ----------------------------------7 2 - 4 模式初始場資料 ----------------------------------7 2 - 5 個案天氣分析 ------------------------------------8 第三章 模式架構與實驗設計 ============================ 10 3 - 1 WRF 數值模式簡介 ------------------------------10 3 - 2 實驗設計 --------------------------------------11 第四章 雲微物理參數化方案簡介 ======================== 13 4 - 1 Morrison scheme -----------------------------14 4 - 2 Thompson scheme -----------------------------15 4 - 3 WSM6 scheme ---------------------------------17 4 - 4 WDM6 scheme ---------------------------------18 第五章 模擬結果比較 =================================== 20 5 - 1 綜觀環境場分析 --------------------------------20 5 - 2 探空資料分析 ----------------------------------20 5 - 3 降水系統演進分析 ------------------------------22 5 - 4 降水分佈比較 ----------------------------------23 5 - 4 - 1 觀測降水分佈 ------------------------------23 5 - 4 - 2 模擬降水分佈 ------------------------------23 5 - 5 S - POL 雷達分析 -----------------------------24 5 - 6 雷達回波CFAD 分析 ----------------------------26 5 - 6 - 1 強回波時期 -------------------------------27 5 - 6 - 2 弱回波時期 -------------------------------28 5 - 7 垂直速度CFAD 分析 ----------------------------30 5 - 7 - 1 強回波時期 -------------------------------31 5 - 7 - 2 弱回波時期 -------------------------------31 5 - 8 PID (Particle identification)降水粒子分類 ----32 5 - 8 - 1 強回波時期 -------------------------------34 5 - 8 - 2 弱回波時期 -------------------------------35 5 - 9 降水粒子混合比CFAD 分佈 -----------------------37 5 - 9 - 1 雨水混合比CFAD ---------------------------37 5 - 9 - 2 雲水混合比CFAD ---------------------------38 5 - 9 - 3 雲冰混合比CFAD ---------------------------38 5 - 9 - 4 雪混合比CFAD -----------------------------39 5 - 9 - 5 軟雹混合比CFAD ---------------------------39 5 - 10 雨水粒子濃度分析 -----------------------------40 5 - 10 - 1 雨水粒子濃度時序變化 ----------------------41 5 - 10 - 2 降雨率時序變化 ---------------------------42 第六章 結論 ========================================== 43 參考文獻 ============================================ 48

    參考文獻
    黃竹君, 2012:氣膠衝擊颱風之模擬 - 納莉颱風(2001), 台灣大學理學院大
    氣科學研究所碩士論文。
    錢伊筠, 2010: WRF 模式Double-moment 雲微物理參數化法對於SoWMEX
    IOP-4 個案降水模擬之敏感度研究,中央大學大氣物理研究所碩士論
    文。
    西南氣流實驗(SoWMEX/TiMREX)資料取自 http://sowmex.cwb.gov.tw/2008/
    Armijo, L., 1969: A theory for the determination of wind and
    precipitation velocities with Doppler radars. J. Atmos. Sci., 26, 570–
    573.
    Brandes, E. A., G. Zhang, and J. Sun, 2006: On the influence of assumed
    drop size distribution form on radar retrieved thunderstorm
    microphysics,J. Appl. Meteorol. Climatol., 45, 259-268,
    doi:10.1175/JAM2335.1.
    Chen, J.-P., and S.-T. Liu, 2004: Physically-based two-moment bulk-water
    parameterization for warm cloud microphysics. Q. J. Royal Meteor.
    Soc., 130, Part A, 51-78
    Cohard, J.-M., and J.-P. Pinty, 2000: A comprehensive two-moment
    warm microphysical bulk scheme. : Description and tests.
    Quart. J. Roy. Meteor. Soc., 126, 1815-1842.
    Cooper, W. A., 1986: Ice initiation in natural clouds. Precipitation
    Enhancement—A Scientific Challenge, Meteor. Monogr., No. 43,
    Amer. Meteor. Soc., 29–32.
    Curry, J. A., 1986: Interactions among turbulence, radiation, and
    microphysics in Arctic stratus clouds. J. Atmos. Sci., 43, 90–106.
    ____, and Coauthors, 2000: FIRE Arctic Clouds Experiment. Bull.
    Amer. Meteor. Soc., 81, 5–29.
    Doviak, R. J., Peter S. R., Richard G. Strauch and Miller.L., 1976: Error
    Estimation in Wind Fields Derived from Dual-Doppler Radar
    Measurement. J. Applied Meteor, 15, 868–878.
    Dudhia, J., 1989: Numerical study of convection observed during the
    winter monsoon experiment using a mesoscale two-dimensional
    model. J. Atmos. Sci., 46, 3077–3107.
    Feingold, G., B. Stevens, W. R. Cotton, and R. L. Walko, 1994:An explicit
    cloud microphysical/LES model designed to simulate the Twomey
    effect. Atmos. Res., 33, 207–233.
    Ferrier, B. S., 1994: A double-moment multiple-phase four-class bulk ice
    scheme. Part I: Description. J. Atmos. Sci., 51, 249–280.
    Fletcher, N. H., 1962: The physics of rain clouds. Cambridge Univ. Press,
    390pp.
    Fowler, L. D., D. A. Randall, and S. A. Rutledge, 1996: Liquid and ice
    microphysics in the CSU General Circulation Model. Part 1: Model
    description and simulated microphysical processes. J. Climate, 9,
    489–529.
    Gao, W., C.-H. Sui, T.-C. Chen Wang, and W.-Y. Chang, 2011: An
    evaluation and improvement of microphysical parameterization
    from a two-moment cloud microphysics scheme and the Southwest
    Monsoon Experiment (SoWMEX)/Terrain influenced Monsoon
    Rainfall Experiment (TiMREX) observations, J. Geophys. Res., 116.
    doi:10.1029/2011JD015718.
    Ghan, S. J., and R. C. Easter, 1992: Computationally efficient
    approximations to stratiform cloud microphysics parameterization.
    Mon. Wea. Rev., 120, 1572–1582.
    Girard, E., and J. A. Curry, 2001: Simulation of Arctic low-level clouds
    observed during the FIRE Arctic Clouds Experiment using a new bulk
    microphysics scheme. J. Geophys. Res., 106, 15 139–15 154.
    Grell, G. A., and D. Devenyi ,2002: A generalized approach to
    parameterizing convection combining ensemble and data
    assimilation techniques. Geophys. Res. Lett., 29, 1693.
    doi:10.1029/2002GL015311.
    Gunn, R. and G.D. Kinzer, 1949: The terminal velocity of fall for droplets
    in stagnant air. J. Meteor., 6, 243-248.
    Harrington, J. Y., M. P. Meyers, R. L. Walko, and W. R. Cotton, 1995:
    Parameterization of ice crystal conversion process due to vapor
    deposition for mesoscale models using doublemoment basis
    functions. Part I: Basic formulation and parcel model results. J.
    Atmos. Sci., 52, 4344–4366.
    Hong, Song-You, Hua-Lu Pan, 1996: Nonlocal boundary layer vertical
    diffusion in a medium-range forecast model. Mon. Wea. Rev., 124,
    2322-2339.
    ____, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice
    microphysical processes for the bulk parameterization of clouds
    and precipitation. Mon. Wea. Rev., 132, 103–120.
    ____, and J.-O. J. Lim, 2006: The WRF single-moment 6-class
    microphysics scheme. Journal of the Korean Meteorological society,
    42, 129–151.
    ____, and K.-S. S. Lim, 2009: The WRF double-moment cloud
    microphysics scheme (WDM). Proc. The Third East Asia WRF
    Workshop and Tutorial, Seoul, South Korea, Joint Center for
    High-Impact Weather and Climate Research, 14.
    Houze, R. A., P. V. Hobbs, P. H. Herzegh, and D. B. Parsons, 1979: Size
    distributions of precipitation particles in frontal clouds. J. Atmos.
    Sci., 36, 156–162.
    Jiang, H., W. R. Cotton, J. O. Pinto, J. A. Curry, and M. J. Weissbluth,
    2000: Cloud resolving simulations of mixed-phase arctic stratus
    observed during BASE: Sensitivity to concentration of ice crystals
    and large-scale heat and moisture advection. J. Atmos. Sci., 57,
    2105–2117.
    ____, G. Feingold, W. R. Cotton, and P. G. Duynkerke, 2001: Large-eddy
    simulation of entrainment of cloud condensation nuclei into the
    arctic boundary layer: May 18, 1998 FIRE/SHEBA case study. J.
    Geophys. Res., 106, 15 113–15 122.
    Kessler, E., III, 1969: On the distribution and continuity of water
    substance in atmospheric circulations. Meteor. Monogr., No. 32,
    Amer. Meteor. Soc., 84 pp.
    Khvorostyanov, V. I., 1995: Mesoscale processes of cloud formation,
    cloud-radiation and their modeling with explicit microphysics. Atmos.
    Res., 39, 1–67.
    Kruger, S. K., Q. Fu, K. N. Liou, and H.-N. S. Chin, 1995: Improvements
    of an ice-phase microphysics parameterization in numerical
    simulations of tropical convection. J. Appl. Meteor., 34, 281–287.
    Lang, S. E., W.-K. Tao, X. Zeng, and Y. Li, 2011: Reducing the biases in
    simulated radar reflectivities from a bulk microphysics scheme:
    Tropical convective systems. J. Atmos. Sci., 68, 2582–2598.
    Lhermitte, R. M., and L. J. Miller, 1970: Doppler radar methodology
    for the observation of convective storms. Preprints, 14th Conf.
    on Radar Meteorology, Tucson, AZ, Amer. Meteor. Soc., 133–
    138.
    Lim K.-S. S., and S.-Y. Hong, 2010: Development of an effective
    double-moment cloud microphysics scheme with prognostic cloud
    condensation nuclei (CCN) for weather and climate Models. Mon.
    Wea. Rev.,138, 1587-1612.
    Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of
    the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065–
    1092.
    Marshall, J. S., and W. M. Palmer, 1948: The distribution of raindrops
    with size. J. Meteor., 5, 165–166.
    McCumber, M., W. K. Tao, J. Simpson, R. Penc, and S. T. Soong, 1991:
    Comparison of ice-phase microphysical parameterization schemes
    using numerical simulations of convection. J. Appl. Meteor., 30, 985–
    1004.
    Meyers, R. L. Walko, J. Y. Harrington, and W. R. Cotton, 1997: New RAMS
    cloud microphysics parameterization. Part II: The two-moment
    scheme. Atmos. Res., 45, 3–39.
    Miller, L. J., and R. G. Strauch, 1974: A dual Doppler radar method
    for the determination of wind velocities within precipitating
    weather systems. Remote Sens. Environ., 3, 219–235.
    Mlawer, E. J., and S. A. Clough, 1997: On the extension of RRTM to the
    shortwave region. In Proceedings of the Sixth Atmospheric
    Measurement (ARM) Science Team Meeting, CONF-9603149,
    pp.223-226. U.S. Department of Energy, Washington, D.C.
    Molthan, A. L. and B. A. Colle, 2012: Comparisons of single- and
    double-moment microphysics schemes in the simulation of a
    synoptic-scale snowfall event. Mon. Wea. Rev., 140, 2982–3002.
    Morrison, H., and J. O. Pinto, 2006: Intercomparison of bulk cloud
    microphysics schemes in mesoscale simulations of springtime Arctic
    mixed-phase stratiform clouds. Mon. Wea. Rev., 134, 1880–1900.
    ____, and A. Gettelman, 2008: A new two-moment bulk stratiform cloud
    microphysics scheme in the Community Atmosphere Model,
    version 3 (CAM3). Part I: Description and numerical tests. J. Climate,
    21, 3642–3659.
    ____, J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment
    microphysics scheme for application in cloud and climate models.
    Part 1: Description. J. Atmos. Sci., 62, 1665–1677.
    ____, J. A. Curry, M.D. Shupe, and P. Zuidema, 2005: A new
    double-moment microphysics parameterization for application in
    cloud and climate models. Part II: Single-column modeling of arctic
    clouds. J. Atmos. Sci., 62, 1678–1693.
    ____, G. Thompson, V. Tatarskii, 2009: Impact of cloud microphysics on
    the development of trailing stratiform precipitation in a simulated
    squall line: Comparison of one- and two-moment schemes. Mon.
    Wea. Rev., 137, 991-1007.
    ____, and G. H. Bryan, 2011: Sensitivity of a simulated squall line to
    horizontal resolution and parameterization of microphysics, Mon.
    Wea. Rev. accepted. (check for early online release)
    Reisner, J., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit
    forecasting of supercooled liquid water in winter storms using
    the MM5 forecast model. Quart. J. Roy. Meteor. Soc., 124,
    1071–1107.
    Rutledge, S. A., and P. V. Hobbs, 1984: The mesoscale and microscale
    structure and organization of clouds and precipitation in
    mid-latitude cyclones. XII: A diagnostic modeling study of
    precipitation development in narrow cold-frontal rainbands. J.
    Atmos. Sci., 41, 2949–2972.
    Stevens, B., G. Feingold, W. R. Cotton, and R. L. Walko, 1996: Elements
    of the microphysical structure of numerically simulated
    nonprecipitating stratocumulus. J. Atmos. Sci., 53, 980–1006.
    Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit
    forecasts of winter precipitation using an improved bulk
    microphysics scheme. Part I: Description and sensitivity analysis.
    Mon. Wea. Rev., 132, 519–542.
    ____, R. M. Rasmussen, and K. Manning, 2008: Explicit forecasts of
    winter precipitation using an improved bulk microphysics scheme.
    Part II: Implementation of a new snow parameterization. Mon.
    Wea.Rev., 136, 5095–5115.
    Tripoli, G. J., and W. R. Cotton, 1980: A numerical investigation of
    several factors contributing to the observed variable intensity of
    deep convection over south Florida. J. Appl. Meteor., 19, 1037-
    1063.
    Vivekanandan, J., S. M. Ellis, R. Oye, D. S. Zrnic, A. V. Ryzhkov, and J.
    Straka, 1999: Cloud microphysics retrieval using S-band
    dual-polarization radar measurements. Bulletin of the American
    Meteorological Society, 80, 381-388
    Walko, R. L., W. R. Cotton, M. P. Meyers, and J. Y. Harrington, 1995: New
    RAMS cloud microphysics parameterization. Part I: The
    single-moment scheme. Atmos. Res., 38, 29–62.
    Wu, X., W. W. Grabowski, and M. W. Moncrieff, 1998: Long-term
    behavior of cloud systems in TOGA COARE and their interactions
    with radiative and surface properties. Part I: Twodimensional
    modeling study. J. Atmos. Sci., 55, 2693–2714.
    Xu, K.-M., and D. A. Randall, 1996: Explicit simulation of cumulus
    ensembles with the GATE Phase III data: Comparison with
    observations. J. Atmos. Sci., 53, 3710–3736.
    Yuter, S. E., and R. A. Houze Jr., 1995: Three dimensional kinematic and
    microphysical evolution of Florida cumulonimbus. Part II: Frequency
    distributions of vertical velocity, reflectivity, and differential
    reflectivity, Mon. Weather Rev., 123, 1941.1963.

    QR CODE
    :::