跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鐘文欣
Wen-hsin Chung
論文名稱: 堆積顆粒崩落歷程受坡面及底床條件影響之實驗研究
The experimental study of the effects of basal and slope conditions on granular pile collapsing
指導教授: 周憲德
Hsien-Ter Chou
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 100
語文別: 中文
論文頁數: 101
中文關鍵詞: 崩塌流體化孔隙水壓速度剖面
外文關鍵詞: collapse, fluidization, pore water pressure, velocity profile
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究進行顆粒崩塌之渠槽實驗,探討堆積顆粒破壞過程的流動特性與孔隙水壓力變化。本研究使用細磨石,分別在不同底床條件及不同高寬比(a=hi /?i)之塊體進行顆粒崩塌實驗,顆粒間孔隙含水量分別為飽和與未飽和,並量測塊體內部動態孔隙水壓力之變化並分析顆粒流動特性。
    由實驗結果知高寬比、拉門速度與被動破壞型態皆影響顆粒流體化的厚度。堆積顆粒崩落會隨時間改變,而底床條件、擋門(Sill)高度、高寬比及含水量皆對顆粒崩落歷程及堆積型態產生影響。實驗以Voronoï 粒子影像法進行分析,可得到速度場分佈。乾顆粒流動層的速度剖面,較符合穩定堆積流變學SSH的形式;而在飽和濕顆粒中,因受到水的影響,流動層的速度剖面較接近Bagnold的形式。孔隙水壓值與堆積顆粒崩塌型態相關,高強度降雨入滲至土體內部,使得土體內部孔隙水壓上升,是造成坡地崩塌的原因之一。


    Flume experiment were employed to examine granular collapses by using ballistic mill stone. The flow characteristics and pore water pressure variation during the collapse of particle piles are analyzed. The effect of aspect ratios of the granular piles under different water content both saturated and unsaturated, is examined by measuring the dynamic pore water pressure and the flow characteristics.
    Aspect ratio (a=hi /?i), sliding speed and passive failure are all related to the thickness of the fluidization. Both the deposit geometric morphology and landslide process depend on basal conditions, sill height, aspect ratio and water content. The dry granular flow velocity profiles can be described by the Super Stable Heap(SSH) model. While in the saturated granular flows, the velocity profile can be described by Bagnold rheology. The variation of pore water pressure is associated with the particle collapse patterns. Heavy rainfall induced infiltration increases the pore water pressure and may cause slope collapse.

    摘要 i Abstract ii 誌謝 iii 目錄 iv 表目錄 vii 圖目錄 viii 第一章 緒論 1 1.1前言 1 1.2研究目的 2 1.3研究內容與方法 2 1.4研究架構 3 第二章 文獻回顧 5 2.1乾顆粒崩塌 5 2.2濕顆粒崩塌 11 2.3孔隙水壓力 13 2.4 速度剖面研究 14 第三章 實驗配置與方法 16 3.1實驗配置 16 3.2壓力計率定 17 3.3影像擷取設備 21 3.4顆粒材料性質 21 3.5實驗步驟 23 3.5.1乾顆粒崩塌實驗 23 3.5.2飽和濕顆粒崩塌實驗 24 3.6 分析方法 25 第四章 實驗結果與討論 26 4.1實驗特性 26 4.1.1渠槽拉門特性 26 4.1.2 顆粒流體化特性 26 4.2 堆積顆粒崩落歷程 31 4.2.1底床條件對崩落歷程影響 31 4.2.2擋門條件對崩落歷程影響 31 4.2.3高寬比對崩落歷程影響 32 4.2.4含水量對崩落歷程影響 34 4.3堆積型態 37 4.4無因次定量分析 43 4.5速度場分析 50 4.6速度剖面 69 4.7孔隙水壓力變化 74 第五章 結論與建議 79 5.1 結論 79 5.2 建議 80 參考文獻 81

    1.Bi, W., Delannay, R., Richard, P., Taberlet, N., & Valance, A. (2005). Two- and three-dimensional confined granular chute flows: experimental and numerical results. Journal of Physics: Condensed Matter, 17(24), S2457-S2480. doi: 10.1088/0953-8984/17/24/006
    2.Capart, H., D. L. Young, & Y. Zech (2002) “Voronoï imaging methods for the measurement of granular flows” Experiments in Fluids. 32(121),121-135
    3.Hsu, L., Dietrich, W. E., & Sklar, L. S. (2008). Experimental study of bedrock erosion by granular flows. Journal of Geophysical Research, 113(F2). doi: 10.1029/2007jf000778
    4.Ilstad, T., Marr, J. G., Elverhøi, A., & Harbitz, C. B. (2004). Laboratory studies of subaqueous debris flows by measurements of pore-fluid pressure and total stress. Marine Geology, 213(1-4), 403-414. doi: 10.1016/j.margeo.2004.10.016
    5.Iverson, .R.M., M.E. Reid & R.G.. LaHusen, (1997), “Debris Flow Mobilization from Landslides”, Annu. Rev. Earth Planet. Sci. 25, 85-138.
    6.Lajeunesse, E., Mangeney-Castelnau, A., &Vilotte, J. P. (2004). Spreading of a granular mass on a horizontal plane. Physics of Fluids, 16(7), 2371. doi: 10.1063/1.1736611
    7.Lajeunesse, E., Monnier, J. B., & Homsy, G. M. (2005). Granular slumping on a horizontal surface. Physics of Fluids, 17(10), 103302. doi: 10.1063/1.2087687
    8.Lube, G., Huppert, H. E., Sparks, R. S. J., & Hallworth, M. A. (2004). Axisymmetric collapses of granular columns. Journal of Fluid Mechanics, 508, 175-199. doi: 10.1017/s0022112004009036
    9.Lube, G., Huppert, H., Sparks, R., & Freundt, A. (2005). Collapses of two-dimensional granular columns. Physical Review E, 72(4). doi: 10.1103/PhysRevE.72.041301
    10.Lube, G., Huppert, H. E., Sparks, R. S. J., & Freundt, A. (2007). Static and flowing regions in granular collapses down channels. Physics of Fluids, 19(4), 043301. doi: 10.1063/1.2712431
    11.Gunaratne, M., Ranganath, M., Thilakasiri, S., Mullins, G., Stinnette, P., Kuot, C.,(1996), “Study of Pore Pressures Induced in Laboratory Dynamic Consolidation”,Computers and Geotechnics ; 18(2):127–143.
    12.Pailha, M., & Pouliquen, O. (2009). A two-phase flow description of the initiation of underwater granular avalanches. Journal of Fluid Mechanics, 633, 115. doi: 10.1017/s0022112009007460
    13.Ng, C. W. W. & Q. Shi, (1998), “A numerical investigation of the stability of unsaturated soil slopes subjected to transient seepage”, Computers and Geotechnics, 22(1), 1-28.
    14.Mayne, P. W., Jones, J. S., Jr.,(1983),” IMPACT STRESSES DURING DYNAMIC COMPACTION”, Journal of Geotechnical Engineering, Vol. 109, No. 10.
    15.Rondon, L., O. Pouliquen & P. Aussillous (2010) “Granular collapse in a fluid: role of the initial volume fraction.” Bulletin of the American Physical Society, 63rd Annual Meeting of the APS Division of Fluid Dynamics, 55(16)
    16.Taberlet, N., Richard, P., Valance, A., Losert, W., Pasini, J., Jenkins, J., & Delannay, R. (2003). Superstable Granular Heap in a Thin Channel. Physical Review Letters, 91(26). doi: 10.1103/PhysRevLett.91.264301
    17.Wang, G., & Sassa, K. (2003). Pore-pressure generation and movement of rainfall-induced landslides: effects of grain size and fine-particle content. Engineering Geology, 69(1-2), 109-125. doi: 1016/s0013-7952(02)00268-5
    18.周憲德、廖偉民,「孔隙水壓對溪床土石流發生機制之影響」,中華水土保持學報,第二十九卷,第三期,1998 年,第211-217 頁
    19.曾偉鑫 (2011),「二維堆積顆粒崩塌過程之研究」,中央大學土木工程學系碩士論文,桃園

    QR CODE
    :::