跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林志豪
Zhi-Hou Lin
論文名稱: 含費米積分之高效率載子解析模型及其在元件模擬上的應用
An Efficient Analytical Model for Carrier Calculation Including Fermi-Dirac Integration and Its Application to Device Simulation
指導教授: 蔡曜聰
Yao-Tsung Tsai
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 92
語文別: 英文
論文頁數: 48
中文關鍵詞: 費米積分三段式解析模型五段式解析模型
外文關鍵詞: Fermi-Dirac integral, Five-Region Analytical Model (FRAM), Three-Region Analytical Model
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要為開發一套有效率的載子濃度計算之解析解模型,此解析解模型是以費米積分為基礎,並將其延伸到三段及五段式解析模型載子濃度計算方法。使用此模型將不再需要任何的數值積分方法,並且此解析解模型比傳統的費米數值積分方法還要快三十九倍。為了印證所開發之載子濃度計算方法的正確性,我們也使用Medici操作手冊提供的載子濃度計算模型來印證並且與其他的解析模型比較之。而我們也將此模型加以改良使得我們的金氧半導體之源極、汲極與基板能摻雜到更高等級的濃度。並且,我們也利用我們已開發的模型來探討在金氧半導體電容與金氧半導體元件的半導體電荷及其在放大器元件上的應用。


    In this thesis, we develop an efficient analytical model for carrier calculation. This model is based on the Fermi-Dirac integral, and extends it from the Three-Region to Five-Region analytical model of carrier calculation. No numerical integral is needed in the new model. And the running time of Fermi-Dirac numerical integral is thirty-nine times slower than our analytical models. For verifying the correctness of the analytical model of carrier calculation, we use a carrier calculation model including the Fermi-Dirac carrier statistics in Medici and an analytical model of Shur. Moreover, we apply our model to the MOSFET that allows high doping in the source, drain and substrate regions. Furthermore, we use the developed model to discuss the semiconductor charge of MOS-C and the amplifier application of MOSFET.

    1. Introduction………………………………………………………1 2. Carrier Calculation Method………………………………………3 2.1 Boltzmann and Fermi-Dirac Carrier Statistics………………………………3 2.2 The Relation of ni-Ei Model and Nc-Nv Model in Boltzmann Approximation.7 2.3 The Development of Five-Region Analytical Model (FRAM) …………8 3. Implementation of FRAM………………………………………14 3.1 Results and Verification of FRAM………………………………………14 3.2 The Comparison of FRAM and Other Models………………………19 3.3 Modeling the Boundary Condition of Device Simulation………………22 4. Applications of FRAM in Device Simulation……………………25 4.1 Semiconductor Charge and Surface Potential of 2-D MOS-C Simulation….25 4.2 The 2-D MOSFET Simulation……………………………………………34 4.2.1 I-V Characteristic of 2-D MOSFET……………………………………34 4.2.2 Small-Signal Analysis of NMOS Amplifier……………………………38 5. Conclusion…………………………………………………………………46

    [1] MEDICI User’s Manual,2001.4.0 ed., Avant! Fremount, CA, 2001.
    [2] DESSIS User’s Manual,7.0.6 ed., ISE Integrated System Engineering AG, Zurich, Switzerland, 2001.
    [3] ATLAS User’s Manual,5.0.5.R ed., SILVACO Int., Santa Clara, CA, 2000.
    [4] J. H. Smith, K. M. Steer, T. F. Miller and S. J. Fonash, “Numerical Modeling of Two-Dimensional Device Structures Using Brandt’s Multilevel Acceleration Scheme: Application to Poisson’s Equation,” IEEE Trans. CAD., vol. 10, pp. 822-824, June, 1991.
    [5] U. V. Bhapkar and R. J. Mattauch, “Numerical Simulation of the Current-Voltage Characteristics of Heteroepitaxial Schottky-Barrier Diode,” IEEE Trans. Electron Devices, vol. 40, pp. 1038-1046, June, 1989.
    [6] A. J. Garcia-Loureirot, T. F. Penat, J. M. Lopez-Gonzalezt and L. P. Vinast, “Modeling and Simulation of AlxGa1-xAs/GaAs HBTs using the Finite Element Method,” IEEE Trans., vol. 36, pp. 218-223, Oct. 2000.
    [7] D. A. Neamen, Semiconductor Physics and Devices, 2nd Ed., p.89, McGraw-Hill,
    1997.
    [8] Y. T. Tsai, K. D. Hong and Y. L. Yuan, “An Efficient Analytical Model for Calculating Trapped Charge in Amorphous Silicon,” IEEE Trans. CAD of Integrated Circuits and Systems, vol. 13, no. 6, June, 1994.
    [9] Z. H. Lin, S. J. Li, and Y. T. Tsai, “An Efficient Analytical Model for Carrier Calculation Including Fermi-Dirac Integration and its applications to device simulation,” in EDMS 2003, p.787-790.
    [10] MEDICI User’s Manual,1994.2.0 ed., vol. 1, p.27-28, Avant! Fremount, CA, 1994.
    [11] M. SHUR, Physics and Semiconductor Devices, Prentice-Hall International Editions, p.638, 1990.
    [12] H. C. Casey, Device For Integrated Circuit, Appendix C.2, John Wiley & Sons Inc., 1999.

    QR CODE
    :::