跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王畯嶸
Jiun-Rong Wang
論文名稱: Joint modeling of parametric additive-multiplicative hazards model and longitudinal data
指導教授: 曾議寬
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計研究所
Graduate Institute of Statistics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 52
中文關鍵詞: 加法模型乘法模型聯合模型最大概似估計量蒙地卡羅 EM 演算 法參數化基底風險函數
外文關鍵詞: Additive hazards models, Multiplicative hazards models, Joint modeling, Maximum likelihood estimate, Monte Carlo EM algorithm, parametric baseline hazard
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 聯合模型是個可以同時分析長期追蹤資料與存活資料的方法,此方法使用長期追蹤模型與存活模型來做推論,最常使用的存活模型是Cox比例風險模型。但現實中,並非所有共變量都會滿足比例風險假設。為了解決這問題,本篇研究使用一個較廣義的Cox-Aalen 加乘法模型,再結合長期追蹤模型來描述時間相依共變量與存活時間的關係。為了提升計算效率與解釋能力,我們使用參數化模型來估計基底風險函數。因此,我們建構了聯合概似函數再使用蒙地卡羅EM 演算法來估計未知參數,並且設計了模擬研究來確認本篇研究方法的效果以及使用台灣愛滋病人的資料來做分析。


    Joint modeling approaches offer a solution to analyzing both survival and longitudinal processes simultaneously. The existing approaches focus mostly on developing adaptive and flexible longitudinal processes based on a preselected survival model, most commonly the Cox proportional hazards model. When the proportional hazards assumption fails for some of time dependent covariates of interest, an alternative model robust to proportionality assumption may needed to replace the Cox model. By combining the Cox model and Aalen additive hazards model, we propose a joint model of additive-multiplicative hazards model and longitudinal processes to describe the relationship between survival time and time-varying covariates. This general class of hazards regression model does not need proportionality assumption for all longitudinal covariates. Moreover, unspecified baseline hazard is replaced by parametric models in this study to improve computational efficiency and interpretability. A joint likelihood procedure is proposed to estimate the unknown parameters and components through a Monte Carlo EM algorithm. We conduct simulations to check the performance of our method and analyze a real data from a Taiwanese HIV/AIDS cohort study for illustration.

    1 Introduction 1 2 Model and notation 5 3 EM algorithm 8 4 Simulation studies 18 5 Data analysis 22 6 Discussion 27 Appendix A 28 Appendix B 39 Appendix C 41 References 42

    Aalen, O.O. (1980). A model for non-parametric regression analysis of counting processes. Lecture Notes in Statistics-2 : Mathematical Statistics and Probability Theory, 1-25.

    Booth, J. G. and Hobert, J. P. (1999) Maximizing Generalized Linear Mixed Model Likelihoods with an Automated Monte Carlo EM Algorithm. Journal of the Royal Statistical Society : Series B 61, 265-285.

    Cox, D. R. (1975). Partial likelihood. Biometrika 62, 269{276.

    Cao, B., Jank, W. and Jones, G. (2005). Ascent-based Monte Carlo EM. Journal of the Royal Statistical Society : Series B 67, 235-252.

    Grambsch, P. M. and Therneau, T. M. (1994). Proportional Hazards Tests and Diagnostics Based on Weighted Residuals. Biometrics 81, 515-526.

    Henderson, R., Diggle, P. and Dobson, A. (2000). Joint Modelling of Longitudinal Measurements and Event Time Data. Biostatistics 4, 465-480.

    Louis, T. A. (1982). Finding the observed information matrix when using the EM algorithm. Journal of the Royal Statistical Society : Series B 44, 226-233.

    Lin, D. Y. and Ying, Z. (1995). Semiparametric analysis of general additive-multiplicative hazard models for counting processes. The Annals of Statistics 23, 1712-1734.

    Murphy, S. A. and Sen, P. K. (1991) Time-dependent coefficients in a Cox-type regression model. Stochastic Processes and their Applications 39, 153-180.

    Scheike, T.H. and Zhang, M. J. (2002) An Additive-Multiplicative Cox-Aalen Re-gression Model. Scandinavian Journal of Statistics 29, 75-88.

    Tseng, Y. K., Hsieh, F., and Wang, J. L. (2005). Joint Modeling of Accelerated Failure Time and Longitudinal Data. Biometrika 92, 587-603.

    Wei, G. C. G. and Tanner, M. A. (1990). A Monte Carlo Implementation of the EM Algorithm and Poor Man's Data Augmentation Algorithm. Journal of the American Statistical Association 85, 699-704.

    Wulfsohn, M. S. and Tsiatis, A. A. (1997). A Joint Model for Survival and Longitudinal Data Measured with Error. Biometrics 53, 330-339.

    Zeng, D. and Cai, J. (2005). Asymptotic results for maximum likelihood estimatiors in joint analysis of repeated measurements and survival time. The Annals of Statistics 33, 2132-2163.

    QR CODE
    :::