| 研究生: |
阮開駿 Kai-Chun Juan |
|---|---|
| 論文名稱: |
應用於電動轉向系統之智慧型控制六相永磁同步馬達驅動系統 Intelligent Control of Six-Phase Permanent Magnet Synchronous Motor Drive System for Electric Power Steering System |
| 指導教授: |
林法正
Faa-Jeng Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 132 |
| 中文關鍵詞: | 六相永磁同步馬達 、電動轉向系統 、數位訊號處理器 、非對稱歸屬函數之小波模糊類經網路 、改良型差分演化演算法之非對稱歸屬函數之小波模糊類神經網路 、智慧型二階滑動模態控制器 |
| 外文關鍵詞: | Six-phase permanent synchronous motor, Electric power steering system, Digital signal processor, Wavelet fuzzy neural network with asymmetric membership function, Improved differential evolution wavelet fuzzy neural network with asymmetric membership function, Intelligent two-order sliding-mode controller |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的研究目的是研製以數位訊號處理器為基礎之智慧型控制六相永磁同步馬達驅動系統,其應用在電動轉向系統上。由於電動轉向系統是一個非線性與時變的系統,控制的準確性對於整個電動轉向系統的參數變化、外力干擾與摩擦力相當敏感。然而電動轉向系統的穩定性是目前最重要的發展議題,因此本論文提出兩種智慧型控制系統,一個是具有線上調整學習速率的改良型差分演化演算法之非對稱歸屬函數之小波模糊類神經網路控制器,另一個是智慧型二階滑動模態控制器,利用非對稱歸屬函數之小波模糊類經網路的線上學習能力與快速收斂的特性來估測電動轉向系統的不確定項,以達到電動轉向系統所需求高的控制性能。最後以DSP(TMS320F28335)實現六相永磁同步馬達驅動系統,並且以實驗結果來驗證所提出的智慧型控制器之可行性。
The purpose of this thesis is to develop a digital signal processor (DSP) based intelligent control of six-phase permanent magnet synchronous motor (PMSM) drive system for electric power steering (EPS) system. Due to the EPS system is a nonlinear and time-varying system, the control accuracy is very sensitive to the parameter variations and external disturbances. Since the stability of EPS system is the most important issue, two intelligent control systems are proposed in this thesis. First, an improved differential evolution wavelet fuzzy neural network with asymmetric membership function (IDE WFNN-AMF) is proposed, in which the learning rates of IDE WFNN-AMF are adapted online. Then, an intelligent two-order sliding-mode controller (I2OSMC) is proposed, in which the uncertainties of the EPS system is estimated using the WFNN-AMF with online learning and fast convergence capabilities. The above two intelligent controllers can achieve the required high control performance of the EPS system. Finally, the six-phase PMSM drive system is implemented by the DSP TMS320F28335, and some experimental results are illustrated to verify the validity of the proposed intelligent controllers.
[1] A. E. Cetin, M. A. Adli, D. E. Barkana, and H. Kucuk, “Implementation and development of an adaptive steering-control system,” IEEE Trans. Vehicul. Technol., vol. 59, no. 1, pp. 75-83, 2010.
[2] X. Chen, T. Yang, X. Chen, and K. Zhou, “A generic model-based advanced control of electric power-assisted steering systems,” IEEE Trans. Contr. Syste. Technol., vol. 16, no. 6, pp. 1289-1300, 2008.
[3] M. Parmar and J. Y. Hung, “A sensorless optimal control system for an automotive electric power assist steering system,” IEEE Trans. Indust. Electron., vol. 51, no. 2, pp. 290-298, 2004.
[4] S. Anwar and L. Chen, “An analytical redundancy-based fault detection and isolation algorithm for a road-wheel control subsystem in a steerby-wire system,” IEEE Trans. Vehicul. Technol., vol. 56, no. 5, pp. 2859-2869, 2007.
[5] P. Setlur, J. R. Wagner, D. M. Dawson, and D. Braganza, “A trajectory tracking steer-by-wire control system for ground vehicles,” IEEE Trans. Vehicul. Technol., vol. 55, no. 1, pp. 76-85, 2006.
[6] C. D. Gadda, S. M. Laws, and J. C. Gerdes, “Generating diagnostic residuals for steer-by-wire vehicles,” IEEE Trans. Contr. Syste. Technol., vol. 15, no. 3, pp. 529-540, 2007.
[7] J. C. Salmon and B. W. Williams, “A split-wound induction motor design to improve the reliability of PWM inverter drives,” IEEE Trans. Indust. Appl., vol. 26, no. 1, pp. 143-150, 1990.
[8] R. O. C. Lyra and T. A. Lipo, “Torque density improvement in a six-phase induction motor with third harmonic current injection,” IEEE Trans. Indust. Appl., vol. 38, no. 5, pp. 1351-1360, 2002.
[9] S. Green, D. J. Atkinson, A. G. Jack, B. C. Mecrow, and A. King, “Sensorless operation of a fault tolerant PM drive,” IEE Proc. Electr. Power Appl., vol. 150, no. 2, pp. 117-125, 2003.
[10] F. J. Lin, Y. C. Hung, and M. T. Tsai, “Fault tolerant control for
six-phase PMSM drive system via intelligent complementary
sliding mode control using TSKFNN-AMF,” IEEE Trans. Indust.
Electron., to be published, 2013.
[11] W. Yu and X. Li, “Fuzzy identification using fuzzy neural networks with stable learning algorithms,” IEEE Trans. Fuzzy Syst., vol. 12, no. 3, pp. 411-420, 2004.
[12] F. J. Lin, H. J. Shieh, P. K. Huang, and L. T. Teng, “Adaptive control with hysteresis estimation and compensation using RFNN for piezo-actuator,” IEEE Trans. Ultrason. Ferroelectr. Freq. Contr., vol. 53, no. 9, pp. 1649-1661, 2006.
[13] F. J. Lin, P. H. Chou, C. S. Chen, and Y. S. Lin, “DSP-based cross-coupled synchronous control for dual linear motors via intelligent complementary sliding mode control,” IEEE Trans. Indust. Electron., vol. 59, no. 2, pp. 1061-1073, 2012.
[14] H. Chaoui and P. Sicard, “Adaptive fuzzy logic control of permanent magnet synchronous machines with nonlinear friction,” IEEE Trans. Indust. Electron., vol. 59, no. 2, pp. 1123-1133, 2012.
[15] M. A. Khanesar, E. Kayacan, M. Teshnehlab, and O. Kaynak, “Extended Kalman filter based learning algorithm for type-2 fuzzy logic systems and its experimental evaluation,” IEEE Trans. Indust. Electron., vol. 59, no. 11, pp. 4443- 4455, 2012.
[16] H. Y. Pan, C. H. Lee, F. K. Chang, and S. K. Chang, “Construction of asymmetric type 2 fuzzy membership function and application in time series prediction,” in Proc. Int. Conf. Machine Learning and Cybernetics, pp. 2024-2030, 2007.
[17] K. H. Cheng, C. F. Hsu, C. M. Lin, T. T. Lee, and C. Li, “Fuzzy neural sliding mode control for dc-dc converters using asymmetric gaussian membership functions,” IEEE Trans. Indust. Electron., vol. 54, no. 3, pp. 1528-1536, 2007.
[18] C. H. Lee, T. W. Hu, C. T. Lee, and Y. C. Lee, “A recurrent interval type-2 fuzzy neural network with asymmetric membership functions for nonlinear system identification,” in Proc. IEEE Conf. Fuzzy System, pp. 1496-1502, 2008.
[19] J. Zhang, , G. G. Walter, Y. Miao, and W. N. W. Lee, “Wavelet neural networks for function learning,” IEEE Trans. Signal Process., vol. 43, no. 6, pp. 1485-1497, 1995.
[20] H. Pan and L. Z. Xia, “Efficient object recognition using boundary representation and wavelet neural network,” IEEE Trans. Neural Netw., vol. 19, no. 12, pp. 2132-2149, 2008.
[21] C. H. Lu, “Wavelet fuzzy neural networks for identification and predictive control of dynamic systems,” IEEE Trans. Indust. Electron., vol. 58, no. 7, pp. 3046-3058, 2011.
[22] F. J. Lin, K. H. Tan, and J. H. Chiu, “Active islanding detection method using wavelet fuzzy neural network,” in Proc. 2012 IEEE Intern. Confere. Fuzzy System, pp. 1-8, 2012.
[23] F. J. Lin, K. H. Tan, D. Y. Fang, and Y. D. Lee, “Intelligent controlled three-phase squirrel-cage induction generator system using wavelet fuzzy neural network for wind power,” IET Renewa. Power Generat., to be published, 2013.
[24] R. Storn and K. Price, “Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces,” J. Glob. Optim., vol. 11, no. 4, pp. 341-359, 1997.
[25] J. Yan, C. Guo1, and W. Gong, “Hybrid differential evolution with convex mutation,” Journal of Software, vol. 6, no. 11, pp. 2321-2328, 2011.
[26] A. Slowik, “Application of an adaptive differential evolution algorithm with multiple trial vectors to artificial neural network training”, IEEE Trans. Indust. Electron., vol. 58, no. 8, pp. 3160-3167, 2011.
[27] C. H. Chen, C. J. Lin, and C. T. Lin, “Nonlinear system control using adaptive neural fuzzy networks based on a modified differential evolution,” IEEE Trans. Syste., Man, and Cybernet. -Part C: Applicat. and Revie., vol. 39, no. 4, pp. 459-473, 2009.
[28] S. M. Elsayed, R. A. Sarker, and D. L. Essam, “An improved self-adaptive differential evolution algorithm for optimization problems,” IEEE Trans. Indust. Informat., vol. 9, no. 1, pp. 89-99, 2013.
[29] S. M. Islam, S. Das, S. Ghosh, S. Roy, and P. N. Suganthan, “An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization,” IEEE Trans. Syste., Man, and Cybernet. -Part b: Cybernet., vol. 42, no. 2, pp. 482-500, 2012.
[30] B. Xin, J. Chen, J. Zhang, H. Fang, and Z. H. Peng, “Hybridizing differential evolution and particle swarm optimization to design powerful optimizers: A review and taxonomy,” IEEE Trans. Syste., Man, and Cybernet. -Part C: Applicat. and Revie., vol. 42, no. 5, pp. 744-767, 2012.
[31] P. Rocca, G. Oliveri, and A. Massa, “Differential evolution as applied to electromagnetics,” IEEE Anten. and Propagat. Magaz., vol. 53, no. 1, pp. 38-49, 2011.
[32] W. Gong, Z. Cai, C. X. Ling, and H. Li, “Enhanced differential evolution with adaptive strategies for numerical optimization,” IEEE Trans. Syste., Man, and Cybernet. -Part b: Cybernet., vol. 41, no. 2, pp. 397-413, 2011.
[33] B. Y. Qu, P. N. Suganthan, and J. J. Liang, “Differential evolution with neighborhood mutation for multimodal optimization,” IEEE Trans. Evolution. Computat., vol. 16, no. 5, pp. 601-614, 2012.
[34] K. Meng, Z. Y. Dong, and K. P. Wong, “Self-adaptive radial basis function neural network for short-term electricity price forecasting,” IET Gener. Transm. Distrib., vol. 3, no. 4, pp. 325-335, 2009.
[35] J. J. E. Slotine and W. Li, Applied Nonlinear Control. Prentice-Hall, NJ, 1991.
[36] B. Beltran, T. Ahmed-Ali, and M. Benbouzid, “High-order sliding-mode control of variable-speed wind turbines,” IEEE Trans. Indust. Electron., vol. 56, no. 9, pp. 3314-3321, 2009.
[37] A. G. Loukianov, J. M. Cañedo, L. M. Fridman, and A. Soto-Cota, “High-order block sliding-mode controller for a synchronous generator with an exciter system,” IEEE Trans. Indust. Electron., vol. 58, no. 1, pp. 337-347, 2011.
[38] M. Manceur, N. Essounbouli, and A. Hamzaoui, “Second-order sliding fuzzy interval type-2 control for an uncertain system with real application,” IEEE Trans. Fuzzy Syst., vol. 20, no. 2, pp. 262-275, 2012.
[39] F. J. Lin, Y. C. Hung, and M. T. Tsai, “Fault tolerant control for six-phase PMSM drive system via intelligent complementary sliding mode control using TSKFNN-AMF,” IEEE Trans. Indust. Electron., to be published, 2013.
[40] F. Valenciaga and P. F. Puleston, “High-order sliding control for a wind energy conversion system based on a permanent magnet synchronous generator,” IEEE Trans. Energy Convers., vol. 23, no. 3, pp. 860-867, 2008.
[41] A. Pisano, A. Davila, L. Fridman, and E. Usai, “Cascade control of PM DC drives via second-order sliding-mode technique,” IEEE Trans. Indust. Electron., vol. 55, no. 11, pp. 3846-3854, 2008.
[42] A. Girin, F. Plestan, X. Brun, and A. Glumineau, “High-order sliding-mode controllers of an electropneumatic actuator: Application to an aeronautic benchmark,” IEEE Trans. Contr. Syst. Technol., vol. 17, no. 3, pp. 633-645, 2009.
[43] M. Amodeo, A. Ferrara, R. Terzaghi, and C. Vecchio, “Wheel slip control via second-order sliding-mode generation,” IEEE Trans. Intellig. Transportat. Syst., vol. 11, no. 1, pp. 122-131, 2010.
[44] J. Na, X. Ren, and D. Zheng, “Adaptive control for nonlinear pure-feedback systems with high-order sliding mode observer,” IEEE Trans. Neur. Netw. and Learn. Syst., vol. 24, no. 3, pp. 370-382, 2013.
[45] TMS320F28335,TMS320F28334, TMS320F28332, TMS320F28235,
TMS320F28234, TMS320F28232 Digital Signal Controllers (DSCs)
Data Manual, Texas Instruments, June 2007.
[46] 許尚文,”六相永磁式同步電動機之設計與控制”,碩士論文,台灣科技大學電機研究所,民國九十五年。
[47] 吳泰廷,”六相永磁式同步電動機驅動系統之故障後控制策略”,碩士論文,台灣科技大學電機研究所,民國九十八年。
[48] 王俊超,”六相永磁式同步電動機驅動器之分析與設計”,碩士論文,台灣科技大學電機研究所,民國九十四年。
[49] 洪英智,”以FPGA為基礎之類神經網路控制線型超音波馬達”,碩士論文,東華大學電機研究所,民國九十七年。
[50] H. R. Choi and G. H. Choe, “A multiobjective parametric optimization for passenger-car steering actuator,” IEEE Trans. Indust. Electron., vol. 57, no. 3, pp. 900-908, 2010.
[51] F. J. Lin, Y. C. Hung, J. C. Hwang, and M. T. Tsai, “Fault-tolerant control of a six-phase motor drive system using a Takagi-Sugeno-Kang type fuzzy neural network with asymmetric membership function,” IEEE Trans. Power Electron., vol. 28, no. 7, pp. 3557-3572, 2013.
[52] Bartolini G., Ferrara A., Levant A., and Usai E., 1999, On second order sliding mode controllers, Variable structure system, sliding mode and nonlinear control (Lecture notes in control and information sciences; 247), Springer-Verlag, pp329-350
[53] 蔡孟庭,”智慧型錯誤容忍控制六相永磁同步馬達驅動系統之開發”,碩士論文,中央大學電機研究所,民國一百零一年。