跳到主要內容

簡易檢索 / 詳目顯示

研究生: 謝曉婕
Hsiao-Chieh Hsieh
論文名稱: 運用金奈米粒子單壁奈米碳管電極進行水中鉻物種之伏安法分析
Determination of Chromium by Voltammetry Using Gold Nanoparticles/Single Walled Carbon Nanotubes Modified Glassy Carbon Electrode
指導教授: 秦靜如
Ching-Ju Chin
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程研究所
Graduate Institute of Environmental Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 95
中文關鍵詞: 伏安法金奈米粒子單壁奈米碳管鉻物種
外文關鍵詞: voltammetry, gold nanoparticles, single walled carbon nanotubes, Chromium
相關次數: 點閱:20下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鉻具有高毒性,其主要型態為三價鉻(Cr(III))及六價鉻(Cr(VI)),六價鉻具有較高的毒性及使生物致突變性,因此快速和準確地檢測鉻離子已成為一個關鍵問題。本研究利用電鍍沉積法製備金奈米粒子/單壁奈米碳管複合材料修飾玻璃碳電極(Au/SWCNT/GCE)進行水中重金屬鉻物種之伏安法分析。首先選定電鍍金奈米粒子沉積至單壁奈米碳管電極之操作條件及模擬水樣分析目標重金屬Cr(VІ)與Cr(III)最佳參數條件,接著以最佳條件分析目標重金屬作相關性的探討。結果顯示Au/SWCNT/GCE在不同pH電解液條件下,可辨別Cr(VІ)與Cr(III),以線性掃描伏安法(LSV)分別測Cr(VІ)與Cr(III),兩者濃度與其電流值皆得到良好線性關係 (R2 > 0.995),方法定量極限為0.2和0.4 mg L-1。後續分別添加其他重金屬銅、鉛、鎘、鋅以及在不同環境水樣進行干擾測試,探討其他重金屬以及水體對干擾目標重金屬分析之可能性與適用性。結果顯示此複合材料修飾電極感測器進而應用在環境監測上是具有可行性的發展。


    Chromium is considered to be highly toxic, especially hexavalent chromium(Cr(VI)). Fast and accurate detection of chromium ions has become a critical issue. In this study, the gold nanoparticles/single-walled carbon nanotubes modified glassy carbon electrode (Au/SWCNT/GCE) was fabricated for chromium detection through voltammetry. The gold nanoparticles were deposited single-walled carbon nanotube film via electroplating. The deposition time and precursor concentration were optimized. The scanning conditions, such as supporting electrolyte, pH, and scanning velocity were also determined. The results show that Cr(VI) and Cr(III) can be distinguished from Au/SWCNT/GCE under different pH electrolytes. Linear sweep voltammetry (LSV) determination reveals that there exists a good linear relationship between the peak current and the concentration with the limits of quantification of 0.2 and 0.4 mg L−1, respectively. The interferences of other heavy metal ions, such as Cu (II), Pb (II), Cd (II), and Zn (II) are investigated. Then, the possibility and applicability of the target heavy metals were discussed in different environmental water samples. Voltammetric measurement using Au/SWCNT/GCE electrodes affords a fast, simple and sensitive detection of trace amounts of chromium.

    Abstract I 摘要 II 致謝 III Contents IV List of Figures VII List of Tables IX Chapter 1 1 1.1. Background 1 1.2. Objectives 2 Chapter 2 4 2.1. Patterns and detection methods of Chromium 4 2.1.1. Chromium 4 2.1.2. Chromium detection method 6 2.2. Voltammetry 7 2.2.1. The electrochemical reaction and principle 8 2.2.2. Principle and application of voltammetry of chromium 15 2.3. Electrode materials for chromium analysis 16 2.3.1. Mercury and bismuth based electrodes 17 2.3.2. Carbon-based electrodes 20 2.3.3. Gold electrodes 23 2.3.4. Metal/carbon nanotube composites electrode 25 2.4. Carbon nanotubes (CNT) 27 2.4.1. The basic structure of carbon nanotubes 28 2.4.2. Purification of carbon nanotubes 29 2.4.3. Application of carbon nanotube composite electrodes for    electrochemical sensors 31 Chapter 3 32 3.1. Instrumentation 32 3.2. Materials and chemicals 32 3.3. Modification of working electrode (Au/SWCNT/GCE) 33 3.3.1. Pretreatment of SWCNT 33 3.3.2. Preparation of SWCNT/GCE and Au/SWCNT/GCE 34 3.4. Voltammetric analysis 35 3.4.1. Scanning condition 35 3.4.2. Interference analysis 35 3.4.3. Environmental water samples analysis 36   Chapter 4 37 4.1. Electroanalysis performance comparison among electrodes 37 4.1.1. Modification of Au on SWCNT/GCE 38 4.2. Analysis of Cr(VI) by LSV 41 4.2.1. Determination of scanning conditions 41 4.2.2. Analytical performance of the advanced method 48 4.2.3. Interference study 51 4.3. Analysis of Cr(III) by LSV 56 4.3.1. Determination of scanning conditions 56 4.3.2. Analytical performance of the advanced method 61 4.3.3. Interference study 63 4.4. Analysis of Cr(III) and Cr(VI) in environmental water 67 4.5. Memory effects of the electrode 73 Chapter 5 76 5.1. Conclusions 76 5.2. Suggestions 77 References 78

    Ajayan, P. M., Ebbesen, T. W., Ichihashi, T., Iijima, S., Tanigaki, K. and Hiura, H., "Opening carbon nanotubes with oxygen and implications for filling", Nature, 362, 522 - 525, (1993).
    Andrle, C. M., Jakubowski, N. and Broekaert, J. A. C., "Speciation of chromium using reversed phase-high performance liquid chromatography coupled to different spectrometric detection methods", Spectrochimica Acta Part B: Atomic Spectroscopy, 52, 189-200, (1997).
    Ansari, R., Delavar, A. F. and Mohammad-khah, A., "A solid state Cr(VI) ion-selective electrode based on polypyrrole", Microchimica Acta, 178, 71-79, (2012).
    Arancibia, V., Nagles, E., Gómez, M. and Rojas, C., "Speciation of Cr(VI) and Cr(III) in Water Samples by Adsorptive Stripping Voltammetry in the Presence of Pyrogallol Red Applying a Selective Accumulation Potential", International Journal of ELECTROCHEMICAL SCIENCE, 7, 11444-11455, (2012).
    Asadpour-Zeynali, K. and Mollarasouli, F., "Bismuth and Bismuth-Chitosan modified electrodes for determination of two synthetic food colorants by net analyte signal standard addition method", Central European Journal of Chemistry, 12, 711-718, (2014).
    Ashkenani, H. and Taher, M. A., "Selective voltammetric determination of Cu(II) based on multiwalled carbon nanotube and nano-porous Cu-ion imprinted polymer", Journal of Electroanalytical Chemistry, 683, 80-87, (2012).
    Barceloux, D. G., "Chromium", Clinical Toxicology, 37, 173–194, (1999).
    Bas, B., "Refreshable mercury film silver based electrode for determination of chromium(VI) using catalytic adsorptive stripping voltammetry", Anal Chim Acta, 570, 195-201, (2006).
    Beitollahi, H. and Sheikhshoaie, I., "Electrocatalytic and simultaneous determination of isoproterenol, uric acid and folic acid at molybdenum (VI) complex-carbon nanotube paste electrode", Electrochimica Acta, 56, 10259-10263, (2011).
    Beverskog, B. and Puigdomenechb, I., "Revised pourbaix diagrams for chromium at 25–300 °C", Studsvik Material, 39, 43-57, (1997).
    Bui, M. P., Li, C. A., Han, K. N., Pham, X. H. and Seong, G. H., "Simultaneous detection of ultratrace lead and copper with gold nanoparticles patterned on carbon nanotube thin film", Analyst, 137, 1888-94, (2012).
    Calvo-Pérez, A., Domínguez-Renedo, O., Alonso-Lomillo, M. A. and Arcos-Martínez, M. J., "Simultaneous Determination of Cr(III) and Cr(VI) by Differential Pulse Voltammetry Using Modified Screen-Printed Carbon Electrodes in Array Mode", Electroanalysis, 22, 2924-2930, (2010).
    Chin, C.-J. M., Shih, L.-C., Tsai, H.-J. and Liu, T.-K., "Adsorption of o-xylene and p-xylene from water by SWCNTs", Carbon, 45, 1254-1260, (2007).
    Cieślak-Golonka, M., "Toxic and mutagenic effects of chromium(VI). A review", Polyhedron, 15, 3667-3689, (1996).
    Deep, A., Sharma, A. L., Tuteja, S. K. and Paul, A. K., "Phosphinic acid functionalized carbon nanotubes for sensitive and selective sensing of chromium(VI)", J Hazard Mater, 278, 559-65, (2014).
    Dominguez-Renedo, O., Ruiz-Espelt, L., Garcia-Astorgano, N. and Arcos-Martinez, M. J., "Electrochemical determination of chromium(VI) using metallic nanoparticle-modified carbon screen-printed electrodes", Talanta, 76, 854-8, (2008).
    Ebbesen, T. W. and Ajayan, P. M., "Large-scale synthesis of carbon nanotubes", Nature, 358, 220-222, (1992).
    Hemmatkhah, P., Bidari, A., Jafarvand, S., Milani Hosseini, M. R. and Assadi, Y., "Speciation of chromium in water samples using dispersive liquid–liquid microextraction and flame atomic absorption spectrometry", Microchimica Acta, 166, 69-75, (2009).
    Hou, P.-X., Liu, C. and Cheng, H.-M., "Purification of carbon nanotubes", Carbon, 46, 2003-2025, (2008).
    Hrapovic, S., Liu, Y., Male, K. B. and Luong, J. H. T., "Electrochemical Biosensing Platforms Using Platinum Nanoparticles and Carbon Nanotubes", Analytical Chemistry, 76, 1083-1088, (2004).
    Hwang, G. H., Han, W. K., Park, J. S. and Kang, S. G., "Determination of trace metals by anodic stripping voltammetry using a bismuth-modified carbon nanotube electrode", Talanta, 76, 301-8, (2008).
    Ji, Q., Yu, D., Zhang, G., Lan, H., Liu, H. and Qu, J., "Microfluidic Flow through Polyaniline Supported by Lamellar-Structured Graphene for Mass-Transfer-Enhanced Electrocatalytic Reduction of Hexavalent Chromium", Environ Sci Technol, 49, 13534-41, (2015).
    Jin, W., Wu, G. and Chen, A., "Sensitive and selective electrochemical detection of chromium(VI) based on gold nanoparticle-decorated titania nanotube arrays", Analyst, 139, 235-41, (2014).
    Jorge, E. O., Rocha, M. M., Fonseca, I. T. and Neto, M. M., "Studies on the stripping voltammetric determination and speciation of chromium at a rotating-disc bismuth film electrode", Talanta, 81, 556-64, (2010).
    Jyothi, N. R., Farook, N. A. M., Cho, M. and Shim, J., "Analysis and Speciation of Chromium in Environmental Matrices by Various Analytical Techniques", Asian Journal of Chemistry, 25, 4125-4136, (2013).
    Kachoosangi, R. T. and Compton, R. G., "Voltammetric determination of Chromium(VI) using a gold film modified carbon composite electrode", Sensors and Actuators B: Chemical, 178, 555-562, (2013).
    Kokkinos, C. and Economou, A., "Disposable Nafion-modified micro-fabricated bismuth-film sensors for voltammetric stripping analysis of trace metals in the presence of surfactants", Talanta, 84, 696-701, (2011).
    Korolczu, M., "Voltammetric determination of traces of Cr(VI) in the presence of Cr(III) and humic acid", Analytica Chimica Acta, 414, 165-171, (2000).
    Korolczuk, M. and Stepniowska, A., "Determination of Cr(VI) in the presence of high excess of a Cr(III) by adsorptive stripping voltammetry", Talanta, 88, 427-31, (2012).
    Kotaś, J. and Stasicka, Z., "Chromium occurrence in the environment and methods of its speciation", Environmental Pollution, 107, 263-283, (2000).
    Lee, P. M., Wang, Z., Liu, X., Chen, Z. and Liu, E., "Glassy carbon electrode modified by graphene–gold nanocomposite coating for detection of trace lead ions in acetate buffer solution", Thin Solid Films, 584, 85-89, (2015).
    Lin, L., Lawrence, N. S., Thongngamdee, S., Wang, J. and Lin, Y., "Catalytic adsorptive stripping determination of trace chromium (VI) at the bismuth film electrode", Talanta, 65, 144-8, (2005).
    Lin, L., Lawrence, N. S., Thongngamdee, S., Wang, J. and Lin, Y., "Catalytic adsorptive stripping determination of trace chromium (VI) at the bismuth film electrode", Talanta, 65, 144-148, (2005).
    Metters, J. P., Kadara, R. O. and Banks, C. E., "Electroanalytical sensing of chromium(III) and (VI) utilising gold screen printed macro electrodes", Analyst, 137, 896-902, (2012).
    Miscoria, S. A., Jacq, C., Maeder, T. and Martín Negri, R., "Screen-printed electrodes for electroanalytical sensing, of chromium VI in strong acid media", Sensors and Actuators B: Chemical, 195, 294-302, (2014).

    Nguyen, H. D., Nguyen, T. T. L., Nguyen, K. M., Tran, T. A. T., Nguyen, A. M. and Nguyen, Q. H., "Determination of ppt Level Chromium(VI) Using the Gold Nano-Flakes Electrodeposited on Platinum Rotating Disk Electrode and Modified with 4-Thiopyridinium", American Journal of Analytical Chemistry, 06, 457-467, (2015).
    Ouyang, R., Zhang, W., Zhou, S., Xue, Z. L., Xu, L., Gu, Y. and Miao, Y., "Improved Bi Film Wrapped Single Walled Carbon Nanotubes for Ultrasensitive Electrochemical Detection of Trace Cr(VI)", Electrochim Acta, 113, 686-693, (2013).
    Palanisamy, S., Madhu, R., Chen, S.-M. and Ramaraj, S. K., "A highly sensitive and selective electrochemical determination of Hg(ii) based on an electrochemically activated graphite modified screen-printed carbon electrode", Anal. Methods, 6, 8368-8373, (2014).
    Paleologos, E. K., Stalikas, C. D. and Karayannis, M. I., "An optimised single-reagent method for the speciation of chromium by flame atomic absorption spectrometry based on surfactant micelle-mediated methodology", The Analyst, 126, 389-393, (2001).
    Rosca, I. D., Watari, F., Uo, M. and Akasaka, T., "Oxidation of multiwalled carbon nanotubes by nitric acid", Carbon, 43, 3124-3131, (2005).
    Russo, P., Catassi, A., Cesario, A., Imperatori, A., Rotolo, N., Fini, M., Granone, P. and Dominioni, L., "Molecular mechanisms of hexavalent chromium-induced apoptosis in human bronchoalveolar cells", Am J Respir Cell Mol Biol, 33, 589-600, (2005).
    Sadeghi, S. and Garmroodi, A., "A highly sensitive and selective electrochemical sensor for determination of Cr(VI) in the presence of Cr(III) using modified multi-walled carbon nanotubes/quercetin screen-printed electrode", Mater Sci Eng C Mater Biol Appl, 33, 4972-7, (2013).
    Salimi, A., Pourbahram, B., Mansouri-Majd, S. and Hallaj, R., "Manganese oxide nanoflakes/multi-walled carbon nanotubes/chitosan nanocomposite modified glassy carbon electrode as a novel electrochemical sensor for chromium (III) detection", Electrochimica Acta, 156, 207-215, (2015).
    Sánchez-Moreno, R. A., Gismera, M. J., Sevilla, M. T. and Procopio, J. R., "Evaluation of solid-state platforms for chromium (VI) potentiometric sensor development", Sensors and Actuators B: Chemical, 143, 716-723, (2010).
    Stohs, S. J. and Bagchi, D., "Oxidative mechanisms in the toxicity of metal ions.", Free Radical Biology & Medicine, 18, 321-336, (1995).
    Sun, Y. C., Lina, C. Y., Wu, S. F. and Chung, Y. T., "Evaluation of on-line desalter-inductively coupled plasma-mass spectrometry system for determination of Cr(III), Cr(VI), and total chromium concentrations in natural water and urine samples", Spectrochimica Acta Part B: Atomic Spectroscopy, 61, 230-234, (2006).
    Takagi, D., Homma, Y., Hibino, H., Suzuki, S. and Kobayashi, Y., "Single-walled carbon nanotube growth from highly activated metal nanoparticles", Nano Lett, 6, 2642-5, (2006).
    Tukur, S. A., Yusof, N. A. and Hajian, R., "Linear sweep anodic stripping voltammetry: Determination of Chromium (VI) using synthesized gold nanoparticles modified screen-printed electrode", Journal of Chemical Sciences, 127, 1075-1081, (2015).
    Unceta, N., Seby, F., Malherbe, J. and Donard, O. F., "Chromium speciation in solid matrices and regulation: a review", Anal Bioanal Chem, 397, 1097-111, (2010).
    Wan, H., Sun, Q., Li, H., Sun, F., Hu, N. and Wang, P., "Screen-printed gold electrode with gold nanoparticles modification for simultaneous electrochemical determination of lead and copper", Sensors and Actuators B: Chemical, 209, 336-342, (2015).
    Wang, J., "Stripping Analysis at Bismuth Electrodes: A Review", Electroanalysis, 17, 1341-1346, (2005).
    Wang, J. J., Yin, G. P., Zhang, J., Wang, Z. B. and Gao, Y. Z., "High utilization platinum deposition on single-walled carbon nanotubes as catalysts for direct methanol fuel cell", Electrochimica Acta, 52, 7042-7050, (2007).
    Wu, S., Chandra Sekar, N., Tan, S. N., Xie, H. and Ng, S. H., "Determination of chromium(iii) by differential pulse stripping voltammetry at a chitosan–gold nanocomposite modified screen printed electrode", Anal. Methods, 8, 962-967, (2016).
    Xie, X., Mai, Y. and Zhou, X., "Dispersion and alignment of carbon nanotubes in polymer matrix: A review", Materials Science and Engineering: R: Reports, 49, 89-112, (2005).
    Xu, H.-y., Yang, Z.-h., Luo, Y.-l., Zeng, G.-m., Huang, J., Wang, L.-k., Song, P.-p. and Yang, X., "A novel approach to sustain Fe0-electrocoagulation for Cr(VI) removal by optimizing chloride ions", Separation and Purification Technology, 156, 200-206, (2015).
    Yuge, R., Toyama, K., Ichihashi, T., Ohkawa, T., Aoki, Y. and Manako, T., "Characterization and field emission properties of multi-walled carbon nanotubes with fine crystallinity prepared by CO2 laser ablation", Applied Surface Science, 258, 6958-6962, (2012).

    QR CODE
    :::