跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王哲謙
Che-Chien Wang
論文名稱: 應用於3D-HEVC之適應性LCU Level之區域位元率控制
Adaptive Region based Rate Control at the LCU Level of 3D-HEVC
指導教授: 唐之瑋
Chih-Wei Tang
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 114
中文關鍵詞: 3D高效能視訊編碼位元率控制位元分配權重圖位元保留盈餘機制
外文關鍵詞: 3D-HEVC, rate control, bit allocation, weight map, mechanism of retained bits earnings
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 3D視訊帶給觀看者強烈的立體感和臨場感,但其背後卻隱藏著龐大數據資料儲存與傳送問題,然而目前針對3D位元率控制(rate control)改良演算法,卻寥寥無幾,因此,本論文提出3D視訊編碼的色彩視訊之位元率控制演算法,共分為三個部分,第一部分為位元率控制之權重圖設計,由於位元率控制表現不佳,常為實際位元花費與分配位元不匹配,造成位元飢渴(bit starvation),尤其在需使用高位元編碼區域更是嚴重,因此本論文針對畫面中高複雜度(high complexity)區域、同視角的畫面間之差異(inter-frame variation)區域、與同時間軸的視角間畫面之差異(inter-view variation)區域做結合定義為高花費位元區域。第二部分為位元分配最佳化(optimal bit allocation),採用遞迴泰勒展開式(recursive Taylor expansion, RTE),找出高花費位元區域與非高花費位元區域各所屬位元分配最佳解。此外由於編碼所採取之編碼方式為由上至下,由左至右,對於較晚編碼之編碼單元(coding unit, CU),也極易發生位元飢渴,因此本論文之第三部分結合保留盈餘(retained earnings)概念於位元分配中,將對於合成影像品質重要區域,設計位元保留盈餘機制(mechanism of bits retained earnings)。由修改3D-HEVC(3D-High Efficiency Video Coding)之參考軟體HTM10.0之視訊編碼器實驗結果顯示,本論文所使用的演算法優於原始3D-HEVC參考軟體所採用之R-λ model的位元率控制,其數據顯示平均BDBR下降1.24%,平均BDPSNR上升0.035 dB,且平均位元誤差率為0.56%。


    3D videos provide viewers strong stereoscopic feeling and telepresence, but it generates a huge amount of data with a hidden issue on data transmission and storage. However, there is few previous work focused on improving the rate control algorithms of 3D videos. Thus, this thesis proposes a rate control algorithm at the LCU level for 3D color video coding. This research is composed of three parts. The first part of this thesis is the weight map design for rate control. Since poor efficiency of rate control often occurs with the mismatch between the actual bitrate and the target bitrate, it easily causes bit starvation especially for regions which needs higher bits for coding. Therefore, this thesis defines a high bitrate cost region as the intra-frame high complexity region, inter-frame variation region, and inter-view variation region. The second part of this thesis is optimal bit allocation. We use recursive Taylor expansion (RTE) to find the optimal bit allocation for each region. In addition, because each frame is encoded from top to bottom and from left to right, the coding units (CU) that are coded later is more prone to bit starvation. In order to achieve better visual quality, the third part of this thesis proposes to adopt the novel concept of retained earnings for rate control. We design a mechanism of retained bits earnings to keep the image quality for the synthesized important regions. In our experiment, the implementation is based on 3D high efficiency video coding (3D-HEVC) software HTM10.0. The results show that our proposed performance is better than HTM10.0 with the R-λ model with 1.24% BDBR decrease, 0.035 dB BDPSNR increase, and 0.56% bitrate error.

    摘要 I Abstract II 目錄 V 圖目錄 VIII 表目錄 XIII 第一章 緒論 1 1.1前言 1 1.2研究動機 2 1.3研究方法 3 1.4論文架構 4 第二章 3D高效能視訊編碼 (3D-High Efficiency Video Coding, 3D-HEVC) 5 2.1高效能視訊編碼(High Efficiency Video Coding, HEVC)簡介 5 2.1.1 高效能視訊編碼(High Efficiency Video Coding, HEVC)之架構 6 2.1.2 HEVC之特有技術重點 7 2.2 3D高效能視訊編碼(3D-High Efficiency Video Coding, 3D-HEVC)簡介 12 2.2.1 3D-HEVC編碼之架構 12 2.2.2 3D-HEVC Extended View之編碼方案 14 2.2.3 3D-HEVC之Depth Map編碼模式 16 2.2.4 3D-HEVC視角合成演算法 17 2.3總結 19 第三章 位元率控制演算法之現況(State-of-the-art Algorithms for Rate Control) 20 3.1位元率控制之基本原理 20 3.1.1緩衝區設計(Buffer Design) 21 3.1.2位元分配(Bit Allocation) 22 3.1.3量化參數決策(Quantization Parameter Determination) 22 3.2 HEVC之位元率控制演算法現況 23 3.2.1 Unified Rate-Quantization Model (URQ model) 23 3.2.2 R-λ Model 27 3.3 應用於3D Video Coding之位元率控制演算法 30 3.3.1應用於MVC之位元率控制演算法 30 3.3.2應用於3D-HEVC之位元率控制演算法 32 3.4基於區域權重分配位元之位元率控制演算法(Region Weight-based Rate Control Algorithm) 35 3.5總結 36 第四章 本論文提出之應用於3D-HEVC之適應性LCU Level之區域位元率控制方案 37 4.1 本論文採用之應用於位元率控制之多視角視訊編碼預測架構 37 4.2 位元率控制之權重圖設計 38 4.2.1畫面中高複雜度(High Complexity)區域 40 4.2.2同視角的畫面間之差異(Inter-frame Variation)區域 41 4.2.3視角間畫面之差異(Inter-view Variation)區域 44 4.2.4 高花費位元區域 47 4.3 基於權重圖特性進行位元率控制設計 48 4.3.1 LCU level下之位元分配最佳化 48 4.3.2 基於權重圖之LCU Level之位元權重分配 51 4.4 視訊影像品質平滑參數調整 55 4.5合成視角特性之位元保留盈餘機制(Mechanism of Retained Bits Earnings) 57 4.6總結 59 第五章 實驗結果與分析 60 5.1 實驗環境與參數設定 60 5.2 應用於3D-HEVC之適應性LCU Level之區域位元率控制方案之實驗結果分析 64 5.3總結 89 第六章 結論與未來展望 90 參考文獻 91 Publication 96

    [1] G. Tech, Y. Chen, K. Müller, J.-R. Ohm, A. Vetro, and Y.-K. Wang, “Overview of the multiview and 3D extensions of High Efficiency Video Coding,” IEEE Trans. Circuits and Systems for Video Technology, Vol. 26, No. 1,pp.35-49, Jan. 2016.
    [2] (2014, Jul. 15). Test Model 5 [Online]. Available: http://www.mpeg.org/MPEG/MSSG/tm5/.
    [3] H.-J. Lee, T. Chiang, and Y.-Q. Zhang, “Scalable rate control for MPEG-4 video,” IEEE Trans. Circuits and Systems for Video Technology, Vol. 10, No. 6, pp. 878–894, Sept. 2000.
    [4] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of the H.264/AVC video coding standard,” IEEE Trans. Circuits and Systems for Video Technology, Vol. 13, No. 7, pp. 560–576, Jul. 2003.
    [5] K.-P. Lim, G. Sullivan, and T. Wiegand, Text Description of Joint Model Reference Encoding Methods and Decoding Concealment Methods, document Rec. JVT-N046, Hong Kong, China, Jan. 2005.
    [6] G. J. Sullivan, J. Ohm, W.-J. Han, and T. Wiegand, “Overview of the high efficiency video coding (HEVC) standard,” IEEE Trans. Circuits and Systems for Video Technology, Vol. 22, No. 12, pp. 1649–1668, Dec. 2012..
    [7] S.Sethuraman and R.Krishnamurthy, "Model based multipass macroblock-level rate control for visually improved video coding," in Proc.Workshop and Exhibition on MPEG-4, pp. 59-62, June 2001.
    [8] T. M. Cover and J. A. Thomas, Elements of Information Theory. New York: Wiley, 1991.
    [9] W. Ding and B. Liu, “Rate control of mpeg video coding and recording by rate-quantization modeling,” IEEE Trans. Circuits and Systems for Video Technology, Vol. 6, No. 1, pp. 12–20, Feb. 1996.
    [10] Z. He, K. K. Yang and S. K. Mitra. “Low-delay rate control for DCT video coding via ρ-domain source modeling,” IEEE Trans. Circuits and Systems for Video Technology, Vol. 11, No. 8, pp. 928–940, Aug. 2001.
    [11] H. Choi, J. Nam, J. Yoo, D. Sim, and I. Baji´c, Rate Control Based on Unified RQ Model for HEVC, document Rec. JCTVC-H0213, San Jose, CA, USA, Feb. 2012.
    [12] B. Li, H. Li, L. Li, and J. Zhang, “Lambda domain rate control algorithm for High Efficiency Video Coding,” IEEE Trans. Image Processing, Vol. 23, No. 9, pp. 3841–3854, Sept 2014.
    [13] W. Lim, I. V. Bajić, and D. Sim, “QP initialization and interview MAD prediction for rate control in HEVC-based multi-view video coding,” in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 2045-2049, May 2013.
    [14] W. Lim, I. V. Bajić, and D. Sim, “QP initialization and adaptive MAD prediction for rate control in HEVC-based multi-view video coding,” in Proc. IVMSP Workshop, pp.1-4, June 2013.
    [15] S.Tan, S.Ma, S.Wang, and W.Gao, “Synthesized Views Distortion Model Based Rate Control in 3D-HEVC,” IEEE Trans. Circuits and Systems for Video Technology, Vol.PP, No. 99, pp.1, Dec 2015.
    [16] ISO/IEC JTC1/SC29/WG11, “Common Test Conditions of 3DV Core Experiments,” Doc. JCT3V-G1100, San Jose, Jan. 2014.
    [17] G. Ren, P. Li, and G. Wang, “A novel hybrid coarse-to-fine digital image stabilization algorithm,” Inform. Technol. J., Vol. 9, No. 7, pp. 1390-1396, June 2010.
    [18] S. Li, M. Xu, and Z. Wang, “A novel method on optimal bit allocation at LCU level for rate control in HEVC,” in Proc. IEEE International Conference on Multimedia and Expo, pp.1-6, June 2015.
    [19] G.J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of the high efficiency video coding (HEVC) standard,” IEEE Trans. Circuits and Systems for Video Technology, Vol. 22, No. 12, pp. 1649-1668, Dec. 2012.
    [20] X. Shen and Y. Lu, “CU splitting early termination based on weighted SVM,” EURASIP Journal on Image and Video Processing, Vol. 2013, No. 1, pp. 1-11, Dec. 2013.
    [21] ISO/IEC JTC1/SC29/WG11, “High Efficiency Video Coding (HEVC) Test Model 16 (HM 16) Improved Encoder Description Update 2,” Doc JCTVC-T1002, Geneva, Feb. 2015.
    [22] ISO/IEC JTC1/SC29/WG11, “Test Model 10 of 3D-HEVC and MV-HEVC,” Doc JCT3V-J1003, Strasbourg, Oct. 2014.
    [23] H. Brust, K. Müller, H. Schwarz, and T. Wiegand, “Multiview extension of HEVC using reduced resolution disparity information for inter-view prediction tools,” in Proc. 3DTV-Conference: The True Vision-Capture, Transmission and Display of 3D Video (3DTV-CON), pp.1-4, Oct. 2012.
    [24] K. Muller, P. Merkle, G. Tech, and T. Wiegand, “3D Video Coding with Depth Modeling Modes and View Synthesis Optimization,” in Proc. IEEE Signal & Information Processing Association Annual Summit and Conference (APSIPA ASC), pp.1-4, Dec. 2012.
    [25] Z. G. Li, L. Xiao, C. Zhu, and P. Feng, “A novel rate control scheme for video over the Internet,” in Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol.2, pp. 2065-2068, May. 2002.
    [26] Z. G. Li, F. Pan, K. P. Lim, X. Lin, and S. Rahardja, “Adaptive rate control for H.264,” in Proc. International Conference on Image Processing, pp.745-748, Oct. 2004.
    [27] H. Yuan, Y. Chang, J. Huo, F. Yang, and Z. Lu, “Model-based joint bit allocation between texture videos and depth maps for 3-D video coding,” IEEE Trans. Circuits and Systems for Video Technology, Vol. 21, No. 4, pp.485-497, Apr. 2011.
    [28] S. Hu, S. Kwong, Y. Zhang ,and C.C.J. Kuo, “Rate-Distortion Optimized Rate Control for Depth Map-Based 3-D Video Coding,” IEEE Trans. Image Process., Vol. 22, No. 2, pp. 585-594, Feb. 2013.
    [29] S. Tan, J. Si, S. Ma, S. Wang, and W. Gao, “Adaptive frame level rate control in 3D-HEVC,” in Proc. IEEE Visual Communications and Image Processing Conference, pp382-385, Dec.2014
    [30] H.-M. Hu , B. Li,W. Lin,W. Li,M. -T. Sun, “Region-Based Rate Control for H.264/AVC for Low Bit-Rate Applications,” IEEE Trans. Circuits and Systems for Video Technology, pp. 1564-1576, May. 2012.
    [31] S. Li, M. Xu, X. Deng, and Z. Wang, “Weight-based R-λ rate control for perceptual HEVC coding on conversational videos,” in Proc. Signal Processing Image Communication, Vol. 38, pp. 127-140, October. 2015.
    [32] H. Zeng, K.-K. Ma, and C. Cai, “Mode-correlation-based early termination for multi-view video coding,” in Proc. IEEE International Conference on Image Processing, pp. 3405-3408, Sep. 2010.
    [33] L. Zhang, Y. Chen, V. Thirumalai, J.-L. Lin, Y.-W. Chen, J. An, S. Lei, L. Guillo, T. Guionnet, and C. Guillemot, “Inter-view motion prediction in 3D-HEVC,” in Proc. IEEE International Symposium on Circuits and Systems (ISCAS), pp. 17-20, June 2014.
    [34] G. J. Sullivan and T. Wiegand, “Rate-distortion optimization for video compression,” IEEE Signal Process. Mag., Vol. 15, No. 6, pp. 74–90, Nov. 1998.
    [35] R.C. Gonzalez and R. E. Woods, Digital image processing, 3rd ed,2007
    [36] H.-M. Hu , B. Li,W. Lin,W. Li,M. -T. Sun, “Region-Based Rate Control for H.264/AVC for Low Bit-Rate Applications,” IEEE Trans. Circuits and Systems for Video Technology, pp. 1564-1576, May. 2012.
    [37] S. Fan, “A new extracting formula and a new distinguishing means on the one variable cubic equation,” Nat. Sci. J. Hainan Teach. Coll, Vol. 2, pp. 91–98, Sep 1989
    [38] N.R. Draper, H. Smith and E. Pownell, “Applied regression analysis,” New York: Wiley, Vol. 3, 1966.
    [39] R. L. He, M. Yu, and G. Y. Jiang, “A depth image coding method for 3DTV system based on edge enhancement,” in Proc. IEEE International Conference on Communication Technology, pp. 665-668, Nov. 2008.

    QR CODE
    :::