跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃宥傑
Yu-Chieh Huang
論文名稱: 太陽能集熱百葉窗設計之研究
指導教授: 韋安琪
An-Chi Wei
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 111
中文關鍵詞: 聚光型太陽能熱能系統聚光元件側聚光系統太陽能百葉窗太陽能熱能
外文關鍵詞: Concentrated solar thermal system, Concentrator, Side concentrated system, Solar blinds, Solar thermal energy
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 相較於一般的太陽能集熱系統,面積龐大、成本高且受限於地形。本論文設計了側聚光型太陽能熱能百葉窗,運用側聚光反射片,更輕、更薄的結構,將其垂直陣列安裝於向外之窗戶或建築物外側,更節省了設置太陽能集熱器的龐大佔地面積以及成本,對於烈陽西曬更能加以運用。此項發明不僅具百葉窗遮光功用,更具有同時獲取能量的功能。 太陽能百葉窗以三種機構為設計原型,且具有此三種原型之優點,包含了側聚光元件、太陽能平板式集熱器、百葉窗機構。例太陽能平板式集熱器之簡單構造、側聚光反射片之聚光效果以及百葉窗之遮光功能。
    太陽能集熱百葉窗之葉片,主要由側聚光反射片與熱傳模組組合而成。本論文將太陽能百葉窗設計分為四部份。第一部分首先設計側聚光反射片的幾何形狀,以及熱傳模組建構。第二部分,使用光學軟體進行側聚光反射片之光學效率以及幅照度之模擬,並以實驗進行誤差之分析。第三部分,建立熱傳模擬模型。為驗證其模型正確性,實際建立熱傳之實驗,將驗證完之側聚光反射片之光學效率與集熱器效率分析圖進行分析。第四部份,藉以陣列流道層數增加其照光面積,求得達到出口溫度 80℃所需之陣列層數,達到更廣範圍的應用,以及分析其可行性與未來展望。


    This paper designs a new kind of solar thermal collector, it was named solar thermal blinds. It uses the solar flat concentrator to avoid the general solar concentrators bulky, costly and terrain limited systems. Because of the lighter and thinner structure, so it can install for the window or outside of the building. This change not only saves a huge floor area and the cost but also has the functions of shading the sun and obtaining energy. Solar blinds are designed with three mechanisms, including flat concentrators, solar panel collectors and blinds. It has the advantages of those three prototypes. For example, the simple construction of solar flat-panel collectors. The concentrating effect of the solar panel concentrator, and the shading function of the blinds.
    In this paper, solar blinds design is divided into fourth parts. The first part is modifying the geometry of the concentrator, making it more suitable for heat transfer systems. Second, we using optical software for simulation the optical property of the flat concentrators. Third, the physical simulation software is used to combine the simulated laminar flow with solar radiation. The correctness of the model is analyzed by the experiment and collector efficiency. In the fourth part, under the correct model, the array layer of the adsorption chiller starting temperature of 80 °C has been obtained.

    目錄 摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 X 第一章、緒論 1 1-1研究背景 1 1-2 文獻回顧 3 1-3 研究動機與目的 10 1-4 研究方法與流程 11 1-5 論文架構 12 第二章、基礎理論與原理 13 2-1幾何光學原理 13 2-2 熱傳原理 15 2-3熱傳導 16 2-4熱對流 16 2-5熱輻射 17 2-6太陽能平板式集熱器 18 2-7熱能轉換效率分析 22 2-8 小結 24 第三章、設計與模擬 25 3-1 設計理念 26 3-2 太陽輻照度對溫度的影響 29 3-3 設計流程 30 3-4反射片之設計與模擬 31 3-4-1反射片幾何光學設計 33 3-4-2 反射片輻照度模擬 43 3-5 熱傳模組之設計與模擬 44 3-5-1 熱傳模組及流道建構 45 3-5-2 熱傳結構及流道模擬 47 3-6 小結 48 第四章、光學系統實驗架構及數據分析 49 4-1光學實驗架構 49 4-1-1 光學實驗設備 49 4-1-2 側聚光反射片量測系統 52 4-2光學實驗方法 53 4-3光學模擬與實驗結果比較 55 4-4 損失分析 58 4-5 小結 64 第五章、熱傳系統實驗架構及數據分析 65 5-1 熱傳學實驗架構 65 5-1-1 熱傳實驗設備 65 5-1-2 太陽能百葉窗量測系統 68 5-2 熱傳實驗方法 70 5-3 熱傳模擬與實驗結果比較 73 5-4 陣列流道百葉窗模擬 77 5-5 熱傳實驗架構之改善 80 5-6 小結 86 第六章 未來與展望 87 6-1 結論 87 6-2 未來展望 89 參考文獻 91

    參考文獻
    [1] Turner, John A,"A realizable renewable energy future," Science, 285, 687-689(1999).
    [2] Goswami, D. Yogi, and Feng Xu,"Analysis of a new thermodynamic cycle for combined power and cooling using low and mid temperature solar collectors," Journal of Solar Energy Engineering, 121, 91-97 (1999).
    [3] Pei, Gang, Jing Li, and Jie Ji,"Analysis of low temperature solar thermal electric generation using regenerative Organic Rankine Cycle," Applied Thermal Engineering, 30, 998-1004, (2010).
    [4] C. G. Granqvist,"Spectrally selective coatings for energy efficiency and solar applications," Physica Scripta, 32, 401 (1985).
    [5] You, Ying, and J. Hu. Eric,"A medium-temperature solar thermal power system and its efficiency optimization," Applied Thermal Engineering, 22, 357-364 (2002).
    [6] V. Kienzlen, J. M. Gordon, and J. F. Kreider,"The reverse flat plate collector: A stationary, nonevacuated, low-technology, medium-temperature solar collector," Journal of solar energy engineering, 110, 23-30 (1988).
    [7] Ari. Rabl"Optical and thermal properties of compound parabolic concentrators," Solar energy, 18, 497-511 (1976).
    [8] Khalifa, N. Abdul-Jabbar, and S. Salman, Al-Mutawalli,"Effect of two-axis sun tracking on the performance of compound parabolic concentrators," Energy Conversion and Management, 39, 1073-1079 (1998).
    [9] Ehleringer, James, and Irwin Forseth,"Solar tracking by plants," Science, 210, 1094-1098 (1980).
    [10] Bahrami, Arian, Chiemeka Onyeka Okoye, and Ugur Atikol,"The effect of latitude on the performance of different solar trackers in Europe and Africa," Applied energy, 177, 896-906(2016).
    [11] G. McDonald ,"A preliminary study of a solar selective coating system using a black cobalt oxide for high temperature solar collectors," Thin Solid Films, 72, 83-88 (1980).
    [12] N. Hordy, D. Rabilloud, J. L. Meunier, and S. Coulombe,"High temperature and long-term stability of carbon nanotube nanofluids for direct absorption solar thermal collectors." Solar Energy, 105, 82-90 (2014).
    [13] A. C. Wei, S. Y. Hsiao, J. R. Sze, and J. Y. Lee,"V-groove and parabolic array for enlarging the acceptance angle of a side-absorption concentrated photovoltaic system," Optics & Laser Technology, 112, 426-435 (2019).
    [14] 陳自榮,「側聚光型太陽能電池系統之聚光元件設計與製作」,國立中央大學機械工程學系碩士論文,民國104年。
    [15] Kalogirou, A. Soteris,"Solar thermal collectors and applications," Progress in energy and combustion science, 30, (2004).
    [16] Cooper, P. I., and R. V. Dunkle,"A non-linear flat-plate collector model." Solar Energy, 26, 133-140 (1981).
    [17] Facao, Jorge, and Armando C. Oliveira,"Analysis of a plate heat pipe solar collector." International Journal of low carbon technologies, 1, 1(2006).
    [18] Bakos, C. George, "Design and construction of a two-axis Sun tracking system for parabolic trough collector (PTC) efficiency improvement," Renewable energy, 31, 2411-2421(2006).
    [19] Kalogirou, Soteris,"Parabolic trough collector system for low temperature steam generation: design and performance characteristics." Applied Energy, 55, 1-19 (1996).
    [20] S. A. Kalogirou, S. Lloyd, J. Ward, and P, Eleftheriou,"Design and performance characteristics of a parabolic-trough solar-collector system." Applied energy, 47, 341-354 (1994).
    [21] N. K. Bansal, Rajesh Mathur, and M. S. Bhandari,"A study of solar chimney assisted wind tower system for natural ventilation in buildings." Building and Environment, 29, 495-500 (1994).
    [22] N. Kumar, Sendhil, and K. S. Reddy,"Comparison of receivers for solar dish collector system," Energy Conversion and Management, 49, 812-819 (2018).
    [23] Casano, Giovanni, Marco Fossa, and Stefano Piva,"Development and testing of a compound parabolic collector for large acceptance angle thermal applications," International Journal of Heat and Technology 35, 827-835 (2017).
    [24] Singh, Panna Lal, R. M. Sarviya, and J. L. Bhagoria,"Thermal performance of linear Fresnel reflecting solar concentrator with trapezoidal cavity absorbers," Applied Energy, 87,541-550 (2010).
    [25] D. Feuermann, and J. M. Gordon,"Analysis of a two-stage linear Fresnel reflector solar concentrator," Journal of solar energy engineering, 113, 272-279 (1991).
    [26] Web page from: PENGKY Inc
    http://www.pengky.cn/TYN-juguang/8-Fresnel-TYN/Linear%20Fresnel%20TYN.html.
    [27] N. El Gharbi, H. Derbal, and S. Bouaichaoui,"A comparative study between parabolic trough collector and linear Fresnel reflector technologies," Energy Procedia, 6,565-572 (2011).
    [28] 羅凱帆,「吸附式製冷循環系統技術」,臺灣能源期刊,第一卷,第二期,第157-171,2014年。
    [29] B. S. Negi, T. C. Kandpal, and S. S. Mathur."Designs and performance characteristics of a linear Fresnel reflector solar concentrator with a flat vertical absorber," Solar & Wind Technology , 7, 379-392(1990).
    [30] 王曉剛,「熱傳學講義」,義守大學,機械與自動化工程系,2009年。
    [31] P. Sivakumar, W. Christraj, M. Sridharan, and N. Jayamalathi,"Performance improvement study of solar water heating system." ARPN Journal of Engineering and Applied Sciences, 7, 45-49 (2012).
    [32] Frank P. Incropera, DeWitt, David P," Fundamentals of Heat and Mass Transfer." New York: Wiley, 493 (2000).
    [33] Quake, Stephen R,"Microfluidics: Fluid physics at the nanoliter scale" Reviews of Modern Physics, 77, 977–1026 (2005).
    [34] Web page from: Newport Inc
    http://www.newport.com/p/94021A.
    [35] Web page from: HITACHI Inc
    https://www.hsct.com.tw/
    [36] Web page from: Hexagonmetrology Inc
    http://www.hexagonmetrology.com.tw
    [37] Web page from: National Instruments Inc
    http://www.ni.com/zh-tw/support/model.cdaq-9171.html
    [38] Web page from: Chancemore Electrical Inc
    http://www.chancemore.com.tw/index_tw.html

    [39] Web page from: Keysight Technologies Inc
    https://www.keysight.com/tw/zh/home.html
    [40] Web page from: OMEGA Engineering Inc
    https://www.omega.com/en-us/sensors-and-sensing-equipment/flow/positive-displacement-flow-meters/fpd2000-series/p/FPD2014-A
    [41] Web page from: Tungtec Instruments Inc
    http://www.tit-lab.com.tw/pro_b.html
    [42] Web page from: WIKIPEDIA
    https://en.wikipedia.org/wiki/Reynolds_number
    [43] Web page from: AURORA Inc
    https://www.aurora.com.tw/oa/product/0h076424121830884494
    [44] 中華民國工研院太陽能集熱器性能標準,取自:中華民國工研院能資所:
    https://is.gd/EClX1q

    QR CODE
    :::