跳到主要內容

簡易檢索 / 詳目顯示

研究生: 邱國揚
Guo-Yang Ciou
論文名稱: 高分子分散液晶薄膜摻雜微米球
Microsphere Doped Polymer Dispersed Liquid Crystal Films
指導教授: 陳啟昌
Chii-Chang Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 82
中文關鍵詞: 高分子分散液晶微米球
外文關鍵詞: Polymer Dispersed Liquid Crystal, Microsphere
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們探討微米球摻雜在高分子分散膽固醇液晶(Polymer Dispersed Cholesteric Liquid Crystal)和液晶中的光電特性。它們可以藉由電場去控制折射率匹配,使元件從散射態轉到穿透態。
    實驗第一部份我們將微米球加入液晶討論對比度,第二部份將微米球加入高分子分散液晶中,在無電壓時增加不透明狀態的效果,因此提高了對比度。
    最後我們製作摻雜20%直徑3μm PMMA球PD-ChLC元件,操作電壓為38伏特,其對比度為3.3:1。我們也發現加入微米球不只能降低操作電壓,並且也讓我們減少了單體和液晶使用量,因此這項技術也可以降低元件製作的成本。


    In this study, we investigate the electro-optic properties of liquid crystal device which is fabricated by doping microspheres in liquid crystal and polymer dispersed cholesteric liquid crystal. It could be switched from light scattering state to transparent state by applying the electric field to control the refractive index matching between materials.
    In the first part of the experiment, we discuss microsphere doped liquid crystal device contrast ratio. In the second part of the experiment, we doped microspheres in PD-ChLC to decrease the transmission of the opaque state when the voltage is turned off result in increasing the contrast.
    Finally, we make a PD-ChLC device that is doped by 20% PMMA microspheres of 3μm in diameter. The operating voltage and the contrast are 38 V and 3.3:1, respectively. We find that the doping of microsphere in PDLC can not only decrease the operating voltage, but also reduce the amount of usage of monomer and liquid crystal. Thus, this technique can reduce the production cost.

    摘要I AbstractII 圖目錄V 表目錄IX 第一章 緒論1 1.1 前言1 1.2 液晶與高分子應用3 1.2.1奈米粒子填充液晶3 1.2.2高分子分散液晶摻雜奈米粒子5 1.3 本章結論與研究動機7 第二章 基本原理9 2.1液晶簡介9 2.1.1 液晶分類10 2.1.2 液晶的光學特性14 2.1.3 液晶的介電特性16 2.2高分子分散液晶與散射理論17 2.2.1 PDLC的形成原理17 2.2.2高分子分散液晶散光原理19 2.2.3高分子分散液晶的臨界電壓和對比度22 2.3結論23 第三章 實驗製程25 3.1實驗材料25 3.2製作流程28 3.3量測儀器與架構29 3.4 結論31 第四章 實驗結果與討論32 4.1液晶折射率分析35 4.2液晶摻雜微米球之光學特性37 4.3高分子分散膽固醇液晶摻雜微米球之光學特性43 4.4結論60 第五章 總結與未來工作62 5.1總結62 5.2未來工作63 參考文獻65

    [1]C. H. An, J. Yang, Y. E. Lee, C. H. Kim, E. Nam, D. Jung, M. Ho. Cho, and H. Kim, “A Triple-Layered Microcavity Structure for Electrophoretic Image Display,” IEEE Transactions On Electron Device. 58, pp. 1116-1120, (2011).
    [2]D. W. Lee, and J. W. Shiu, “Writable Cholesteric Liquid Crystal Display and the Algorithm Used to Detect Its Image,” Journal Of Display Technology. 5, pp. 172-177 (2009).
    [3]B. Y. Lee, J. H. Lee, “Printable flexible cholesteric capsule display with a fine resolution of RGB subpixels,” Current Applied Physics. 11, pp. 1389-1393 (2011).
    [4]B. Comiskey, J. D Albert, H. Yoshizawa , “An electrophoretic ink for-printed reflective electronic displays,” Nature. 394, pp. 253-255 (1998).
    [5]http://theroadss.blogspot.tw/2011/01/blog-post.html
    [6]http://tw.eink.com/
    [7]D. K. Yang , “Flexible Bistable Cholesteric Reflective Displays,” Journal Of Display Technology. 2, pp. 32-37 (2006).
    [8]H. Y. Jung, H. J. Kim, Y. G. Kang, “Enhanced electro-optical properties of Y2O3 nanoparticle-doped twisted nematic liquid crystal devices,” Liquid Crystals. 39, pp. 789-793 (2012).
    [9]W. K. Lee, S. J. Hwang, M. J. Cho, “CIS-Zns quantum dots for self-aligned liquid crystal molecules with superior ele-optic properties,” Nanoscale. 5, pp. 193-199 (2012).
    [10]Y. S. Ha, H. J. Kim, H. G. Park, and D. S. Seo, “Enhancement of electro-optic properties in liquid crystal devices via titanium nanoparticle doping,” Optics Express. 20, pp. 6448-6455 (2012).
    [11]W. K. Lee, J. H. Choi, H. J. Na, J. H. Lim, J. M. Han, J. Y. Hwang, and D. S. Seo, “Low-power operation of vertically aligned liquid-crystal system via anatase-TiO2 nanoparticle dispersion,” Optics Letters. 34, pp. 3653-3655 (2009).
    [12]S. C. Jeng, S. J. Hwang, C. Y. Yang, “Tunable pretilt angles based on nanoparticles-doped planar liquid-crystal cells,” Optics Letters. 34, pp. 455-457 (2009).
    [13]S. C. Jeng, C. W. Kuo, H. L. Wang, and C. C. Liao, “Nanoparticles-induces vertical alignment in liquid crystal cell,” Appl. Phys. Lett. 91, 061112 (2007).
    [14]S. J. Hwang, S. C. Jeng, and I. M. Hsieh, “Nanoparticles-doped polyimide for controlling the pretilt angle of liquid crystals devices,” Optics Express. 18, pp. 16507-16512 (2010).
    [15]K. K. Vardanyan, R. D. Walton, D. M. Bubb, “Liquid crystal composites with a high percentage of gold nanoparticles,” Liquid Crystals. 38, pp. 1279-1287 (2011).
    [16]K. K. Vardanyan, E. D. Palazzo, R. D. Walton, “Nematic nanocomposites with enhanced optical birefringence,” Liquid Crystals. 38, pp. 709-715 (2011).
    [17]D. Sikharulidze, “Naoparticles:An approach to controlling an electro-optical behavior of nematic liquid crystals,” Appl. Phys. Lett. 86, 033507 (2005).
    [18]C. E. Lee and S. C. Jeng, “Bistal liquid crystal devices with nanoparticle-coated polyimide alignment films,” Optics Letters. 38, pp. 1013-1015 (2013).
    [19]S. C. Jain, Ravindra S, T Lakshmikumar, “Switching response of a polymer dispersed liquid-crystal composite,” J. Appl. Phys. 73, 3744 (1993).
    [20]N. A. Vaz, G. P. Montgomery, “Refractive indices of polymer-dispersed liquid crystal film materials:Epoxy based systems,” J. Appl. Phys. 62, 3161 (1987).
    [21]P. S. Drzaic and A. M. Gonzales, “Refractive index gradients and light scattering in polymer-dispersed liquid crystal films,” Appl. Phys. Lett. 62, 1332 (1993).
    [22]Y. H. Lin, H. Ren, and S. T. Wu, “High contrast polymer-dispersed liquid crystal in 90° twisted cell” Appl. Phys. Lett. 84, 4083 (2004).
    [23]Y. H. Lin, H. Ren, X. Liang and S. T. Wu, “Pinning effect on the phase separation dynamics of thin polymer-dispersed liquid crystal,” Optics Express. 13, pp. 468-474 (2005).
    [24]http://www.polytron.com.tw/Polyvision-Privacy-Glass1.html?CID=2
    [25]D. Churchill, J. V. Cartmell, “Radiation sensitive display device containing encapsulated cholesteric liquid crystals,” US Patent 3,578,844, (1971).
    [26]Fergason JL. “Encapsulated liquid crystal and method,” US Patent 4,435,047, (1984).
    [27]O. V. Yaroshchuk, L. O. Dolgov, “Electro-optics and structure of polymer dispersed liquid crystals doped with nanoparticles of inorganic materials,” Optical Materials. 29, pp. 1097-1102 (2007).
    [28]O. V. Yaroshchuk, L. O. Dolgov, and A. D. Kiselev, “Electro-optics and structural peculiarities of liquid crystal-nanoparticle-polymer composites,” Phy. Rev. E. 72, 051715 (2005).
    [29]A. Masutani, T. Roberts, B. Schuller, N. Hollfelder, P. Kilickiran, G. Nelles, “Nanoparticle Embedded Polymer Dispersed Liquid Crystal for Paper-like Display,” Journal of the SID. 16, pp. 137-141 (2008).
    [30]A. Hinojosa, S. C. Sharma, “Effects of gold nanoparticles on electro-optical properties of a polymer-dispersed liquid crystal, “Appl. Phys. Lett. 97, 081114, (2010).
    [31]松本正一, 角田市良合著, 劉瑞祥譯, "液晶之基礎與應用. " 國立編譯館, (1996) .
    [32]K. H. Kim, H. J. Jin, K. H. Park, J. H. Lee and T. H. Yoon , “Long-pitch cholesteric liquid crystal cell for switchable achromatic reflection,” Optics Express. 13, pp. 16745-16750 (2010).
    [33]T. Yamaguchi, H. Yamaguchi, and Y. Kawata “Driving voltage of reflective cholesteric liquid crystal displays,” J. Appl. Phys. 85, 7511 (1999).
    [34]D. K. Yang and S. T. Wu “Fundamentals of Liquid Crystal Devices,” John Wiley & Sons, Ltd. (2006).
    [35]R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “Bragg Gratings in an AcrylatePolymer Consisting of Periodic Polymer-Dispersed Liquid-Crystal Planes,” Chem. Mater. 5, pp. 1533-1538 (1993).
    [36]H. Nomura, S. Suzuki, and Y. Atarashi, “Electrooptical Properties of Polymer Films Containing Nematic Liquid Crystal Microdroplets,” Jpn. J. Appl. Phys. 29, pp. 522-528 (1990).
    [37]P. Yeh, C. GU, “Optics of Liquid Crystal Display,” Second Edition,WILEY (2010) .
    [38]S. Zumer, J. W. Doane, “Light scattering from a small nematic droplet,” Phy. Rev. A. 49, pp. 3373–3386 (1986) .
    [39]S. Zumer, “Light scattering from nematic droplets :Anomalous-diffraction approach,” Phy. Rev. A. 37, pp. 4006–4015 (1988).
    [40]T. Y. Tasi, C. Y. Lee, C. J. Lee, M. Y. Lin, W. L, “Polymer-dispersed liquid crystal nanocomposites comprising montmorillonite clay modified by conducting pentamerous oligoanilune,” J. Mater. Chem. 22, pp13050-13056 (2012).
    [41]C. Amra, “From light scattering to the microstructure of thin-film multilayers,” Applied Optic. 32, pp5481-5491 (1993).
    [42]M. Kawaida, T. Yamaguchi, and T. Akahane, “Measurement of Refractive Indices of Ferroelectric SmC* Liquid Crystal by Fabry-Perot Interference Method,” Jpn. J. Appl. Phys. 28, pp. 1602-1605 (1989).
    [43]J. Li, C. H. Wen, S. Gauza, R. Lu, S. T. Wu, “Refractive Indices of Liquid Crystals for Display Applications,” Journal Of Display Technology. 1, pp. 51-61 (2005).
    [44]J. J. Wu and C. M. Wang, “Electro-optical properties of aligned polymer dispersed liquid crystal films,” Phys. Lett. A. 232, pp149-154 (1997).
    [45]R. Bhargava, S. Q. Wang, and J. Koenig, “FTIR Imaging Studies of a New Two-Step Process To Produce Polymer Dispersed Liquid Crystals,” Macromolecules. 32, pp2748-2760 (1999).
    [46]P. S. Drzaic, “Polymer dispersed nematic liquid crystal for large area displays and light valves,” J. Appl. Phys. 60, 2142 (1986).
    [47]H. Nomura, S. Suzuki, Y. Atarashi, “Electro-optical properties of films consisting of nematic liquid crystals and connect polymer microsphere,” J. Appl. Phys. 68, 2922 (1990).
    [48]S. W. Myoung, E. H. Kim, Y. G. Jung, “Electrooptical properties and microstructure of polymer-dispersed liquid crystal doped with various reinforcing materials,” Thin Solid Films. 519, pp. 1558-1562 (2010).
    [49]J. L. West, J. R. Kelly, K. Jewell, and Y. Ji, “Effect of polymer matrix glass transition temperature on polymer dispersed liquid crystal electro-optics,” Appl. Phys. Lett. 60, 3238 (1992).
    [50]M. Mucha, “Polymer as an important component of blends and composites with liquid crystals” Prog. Polym. Sci. 28, pp. 837-873(2003).
    [51]L. P. Hsin, W. K. Chin, “Tsc study and Electro-Optical Properties of Epoxy/Acrylic Polymer-Dispersed Liquid-Crystal Film in DICY Thermal Cure ,” J. Polymer Science:Part B. 39, pp. 507-514(2001)
    [52]J. Klostermana, L.V. Natarajan, V.P. Tondiglia, R.L. Sutherland, T.J. White, C.A. Guymon, T.J. Bunning, “The influence of surfactant in reflective HPDLC gratings,” Polymer. 45, pp. 7213–7218 (2004).

    QR CODE
    :::