| 研究生: |
王聖銓 Sheng-Cyuan Wang |
|---|---|
| 論文名稱: |
流感病毒血球凝集素(II)膜外區域之物理化學特性分析 none. |
| 指導教授: |
張定國
Ding-kuo Chang 謝發坤 Fa-kuen Shieh |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 流行性感冒 、血球凝集素 |
| 外文關鍵詞: | protein folding, hemagglutinin, H5N1 |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
流行性感冒病毒時時對全球生命造成的威脅不容小覷,本文聚焦於流感病毒
表面的膜蛋白分子:血球凝集素2 (hemagglutinin2,HA2),尤其是其膜外區域
(ectodomain)。針對膜外區域與膜的直接交互作用之探討,以及作為未來可能的
摺合與結構轉換之動力學實驗的基礎數據,本文以數種物理化學方法,嘗試對於
HA2 膜外區域的若干特性進行分析與探討。
首先筆者以衰減全反射紅外線光譜 (ATR-FTIR)、圓二色極譜 (CD)以調查HA2
膜外區域對膜的擾動及其二級結構,我們發現其具有高度α螺旋比例但對膜的本
身並無顯著擾動。接著,作為後續動力學實驗的基礎,筆者利用圓二色極譜數據
加上不同的螢光 (Rhodamine螢光標定,以及樣本本身的色胺酸螢光)作為工具,
觀察蛋白樣本在不同環境下對於變性劑的反應,並找出結構從有到無之間的臨界
點。
除此之外,本文以三種不同的摺合路徑處理樣本並進行實驗以相互比較,各
個路徑樣本雖然大致相同,然而其中表現出許多差異,值得討論比較。另外,筆
者以膠體電泳配合化學聯結劑 (chemical crosslinker)進行了蛋白樣本形成多聚體傾向的一系列調查,發現這段膜外區域蛋白是以單體為主,且形成多聚體的
傾向並不高;多聚體中傾向較高者為雙體及其倍數體,鮮有單純的三聚體存在。
本論文的結果有助於日後摺合動力學實驗的進行以及改善蛋白樣本的製備流程。此外,對於HA2 膜外區域的特性也產生若干推論,增進吾人對其認識與了解。
The influenza virus have become a global threat for years. In this research, we put the focus on the influenza virus membrane protein hemagglutinin2 (HA2) ectodomain region. Several means and experiment have been executed in order to understand more about the protein, including attenuated total reflection infrared spectroscopy (ATR-FTIR), circular
dichorism (CD), several guanidine (denaturant) titration equilibrium experiments: on CD spectra, on UV spectra of rhodamine (fluorescence emitting group) labeled protein samples, and on the emission spectra of
tryptophan on the protein sample strand. And additionally, the gel electrophoresis experiment.
After the investigation and experiment around the protein sample, the nature of HA2 ectodomain, such as membrane interaction, protein structure,
difference under acidic and neutral buffers, and oligomer-formation
tendency, become more concrete, with little new inferences.
The research gives us a more clear picture of the hemagglutinin protein
ectodomain area. Furthermore, by the guanidine titration data mentioned
above, we are able to accomplish the further works such as the folding
kinetic experiment in the near future.
1. Liu, J., et al., Structures of receptor complexes formed by hemagglutinins from the Asian Influenza pandemic of 1957. Proc Natl Acad Sci U S A, 2009. 106(40): p.17175-80.
2. John Beigel, M.B., Current and future antiviral thearpy of severe seasonal and avian influenza. Antiviral Res., 2008. 78: p. 91-102.
3. Yonghui Zhang, X.L., Fengwei Zhane, Jia Wu, Wenjie Tan, Shengli Bi, Jianfang, Zhou, Yuelong Shu, and Yue Wang, Hemagglutinin and neuraminidase matching patterns of
two influenza A virus strains related to the 1918 and 2009 global pandemics. Biochem Biophys Res Commun., 2009. 387: p. 405-408.
4. Srinivasan, A., et al., Quantitative biochemical rationale for differences in transmissibility of 1918 pandemic influenza A viruses. Proc Natl Acad Sci U S A, 2008. 105(8): p. 2800-5.
5. Ekiert, D.C., et al., Antibody recognition of a highly conserved influenza virus epitope. Science, 2009. 324(5924): p. 246-51.
6. Guo, Y., et al., Analysis of hemagglutinin-mediated entry tropism of H5N1 avian influenza. Virol J, 2009. 6: p. 39.
7. Harrison, S.C., Viral membrane fusion. Nat Struct Mol Biol., 2008. 15(7): p. 690-698.
8. Bullough, P.A., et al., Structure of influenza haemagglutinin at the pH of membrane fusion. Nature, 1994. 371(6492): p. 37-43.
9. Nayak, D.P., E.K.-W. Hui, and S. Barman, Assembly and budding of influenza virus. Virus Res, 2004. 106: p. 147-165.
10. Palese, T.T.W.P., Universal epitopes of influenza virus hemagglutinins? Nat Struct Mol Biol., 2009. 16(3): p. 233-234.
11. Gething, M.J., K. McCammon, and J. Sambrook, Expression of wild-type and mutant forms of influenza hemagglutinin: the role of folding in intracellular transport. Cell,
1986. 46(6): p. 939-50.
12. Cross, K.J., et al., Composition and functions of the influenza fusion peptide. Protein Pept Lett, 2009. 16(7): p. 766-78.
13. Rupert J. Russel, P.S.K., David J. Stevens, David A. Steinhauer, Stephen R. Martin, Steven, J. Gamblin, and John Skehel, Structure of influenza hemagglutinin in complex
with an inhibitor of membrane fusion. Proc Natl Acad Sci USA, 2008. 105(46): p. 17736-17741.
14. Isin, B., P. Doruker, and I. Bahar, Functional motions of influenza virus hemagglutinin: a structure-based analytical approach. Biophys J, 2002. 82(2): p. 569-81.
15. Leikina, E., et al., Delay of influenza hemagglutinin refolding into a fusion-competent conformation by receptor binding: a hypothesis. Biophys J, 2000. 79(3): p. 1415-27.
16. Daniels, R., et al., N-linked glycans direct the cotranslational folding pathway of influenza hemagglutinin. Mol Cell, 2003. 11(1): p. 79-90.
17. Maggioni, M.C., I.M. Liscaljet, and I. Braakman, A critical step in the folding of influenza virus HA determined with a novel folding assay. Nat Struct Mol Biol, 2005. 12(3): p. 258-63.
18. Chen, J., et al., A soluble domain of the membrane-anchoring chain of influenza virus hemagglutinin (HA2) folds in Escherichia coli into the low-pH-induced conformation.
Proc Natl Acad Sci U S A, 1995. 92(26): p. 12205-9.
19. Wilson, I.A., J.J. Skehel, and D.C. Wiley, Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution. Nature, 1981. 289(5796): p. 366-73.
20. Chang, D.K., et al., Membrane interaction and structure of the transmembrane domain of influenza hemagglutinin and its fusion peptide complex. BMC Biol, 2008. 6: p. 2.
21. Takeda, M., et al., Influenza virus hemagglutinin concentrates in lipid raft microdomains for efficient viral fusion. Proc Natl Acad Sci U S A, 2003. 100(25): p.14610-7.
22. Chen, J., J.J. Skehel, and D.C. Wiley, A polar octapeptide fused to the N-terminal fusion peptide solubilizes the influenza virus HA2 subunit ectodomain. Biochemistry, 1998. 37(39): p. 13643-9.
23. Tamm, L.K. and S.A. Tatulian, Infrared spectroscopy of proteins and peptides in lipid bilayers. Q Rev Biophys, 1997. 30(4): p. 365-429.
24. Casal, H.L. and H.H. Mantsch, Polymorphic phase behaviour of phospholipid membranes studied by infrared spectroscopy. Biochim Biophys Acta, 1984. 779(4): p. 381-401.
25. Krimm, S. and J. Bandekar, Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Adv Protein Chem, 1986. 38: p. 181-364.
26. de Jongh, H.H., E. Goormaghtigh, and J.M. Ruysschaert, Amide-proton exchange of water-soluble proteins of different structural classes studied at the submolecular level by infrared spectroscopy. Biochemistry, 1997. 36(44): p. 13603-10.
27. Goormaghtigh, E., V. Raussens, and J.M. Ruysschaert, Attenuated total reflection infrared spectroscopy of proteins and lipids in biological membranes. Biochim Biophys
Acta, 1999. 1422(2): p. 105-85.
28. Harrick, N.J., Internal reflection spectroscopy. 1979, New York: Ossining.
29. Tamm, L.K. and S.A. Tatulian, Orientation of functional and nonfunctional PTS permease signal sequences in lipid bilayers. A polarized attenuated total reflection infrared study. Biochemistry, 1993. 32(30): p. 7720-6.
30. Picard, F., et al., Quantitative orientation measurements in thin lipid films by attenuated total reflection infrared spectroscopy. Biophys J, 1999. 76(1 Pt 1): p. 539-51.
31. Marsh, D., Dichroic ratios in polarized Fourier transform infrared for nonaxial symmetry of beta-sheet structures. Biophys J, 1997. 72(6): p. 2710-8.
32. Ter-Minassian-Saraga, L., et al., Fourier transform infrared-attenuated total reflection spectroscopy of hydration of dimyristoylphosphatidylcholine multibilayers. Biochim Biophys Acta, 1988. 946(2): p. 417-23.
33. Susi, H. and D.M. Byler, Resolution-enhanced Fourier transform infrared spectroscopy of enzymes. Methods Enzymol, 1986. 130: p. 290-311.
34. Madison, V. and J. Schellman, Optical activity of polypeptides and proteins. Biopolymers, 1972. 11(5): p. 1041-76.
35. Chen, Y.H., J.T. Yang, and K.H. Chau, Determination of the helix and beta form of proteins in aqueous solution by circular dichroism. Biochemistry, 1974. 13(16): p.3350-9.
36. Swalley, S.E., et al., Full-length influenza hemagglutinin HA2 refolds into the trimeric low-pH-induced conformation. Biochemistry, 2004. 43(19): p. 5902-11.
37. Curtis-Fisk, J., R.M. Spencer, and D.P. Weliky, Isotopically labeled expression in E. coli, purification, and refolding of the full ectodomain of the influenza virus membrane fusion protein. Protein Expr Purif, 2008. 61(2): p. 212-9.
38. Pace, C.N., et al., How to measure and predict the molar absorption coefficient of a protein. Protein Sci, 1995. 4(11): p. 2411-23.
39. Hamman, B.D., et al., Tetramethylrhodamine dimer formation as a spectroscopic probe of the conformation of Escherichia coli ribosomal protein L7/L12 dimers. J Biol
Chem, 1996. 271(13): p. 7568-73.
40. Forster, T.H. and E. Konig, Absorptionsspektren und Fluoreszenzeigenschaften konzentrierter Losungen organischer Farbstoffe. Ber. Bunsenes. Physik., 1957. 61: p. 344-348.
41. Arbeloa, I.L. and P.R. Ojeda, Dimeric states of rhodamine B Chemical Physics Letters, 1982. 87(6): p. 556-560.
42. Lin, C.H., et al., The application of perfluorooctanoate to investigate trimerization of the human immunodeficiency virus-1 gp41 ectodomain by electrophoresis.
Electrophoresis, 2008. 29(15): p. 3175-82.
43. Chen, J., J.J. Skehel, and D.C. Wiley, N- and C-terminal residues combine in the fusion-pH influenza hemagglutinin HA(2) subunit to form an N cap that terminates the triple-stranded coiled coil. Proc Natl Acad Sci U S A, 1999. 96(16): p. 8967-72.
44. Hamm, P., For structural biology, try infrared instead. Structure, 2009. 17(2): p. 149-50.
45. Manor, J., et al., Gating mechanism of the influenza A M2 channel revealed by 1D and 2D IR spectroscopies. Structure, 2009. 17(2): p. 247-54.
46. Li, Z.N., et al., Length requirements for membrane fusion of influenza virus hemagglutinin peptide linkers to transmembrane or fusion peptide domains. J Virol,
2008. 82(13): p. 6337-48.
47. Reed, M.L., et al., Amino acid residues in the fusion peptide pocket regulate the pH of activation of the H5N1 influenza virus hemagglutinin protein. J Virol, 2009. 83(8): p. 3568-80.
48. Muga, A., H.H. Mantsch, and W.K. Surewicz, Apocytochrome c interaction with phospholipid membranes studied by Fourier-transform infrared spectroscopy. Biochemistry, 1991. 30(10): p. 2629-35.
49. Han, X. and L.K. Tamm, A host-guest system to study structure-function relationships of membrane fusion peptides. Proc Natl Acad Sci U S A, 2000. 97(24): p. 13097-102.
50. Han, X. and L.K. Tamm, pH-dependent self-association of influenza hemagglutinin fusion peptides in lipid bilayers. J Mol Biol, 2000. 304(5): p. 953-65.
51. Cheng, S.F., et al., The fusion peptide domain is the primary membrane-inserted region and enhances membrane interaction of the ectodomain of HIV-1 gp41. Mol
Membr Biol, 2010. 27(1): p. 31-44.