| 研究生: |
林楨桓 Chen-huan Lin |
|---|---|
| 論文名稱: | Study of yeast mitochondrial glutamyl-tRNA synthetase |
| 指導教授: |
王健家
Chein-Chia Wang |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
生醫理工學院 - 生命科學系 Department of Life Science |
| 論文出版年: | 2012 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 140 |
| 中文關鍵詞: | 酵母菌 、附加區段 、粒線體 、tRNA合成酵素 |
| 外文關鍵詞: | yeast, Appended domain, mitochondrial, tRNA synthetase |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
早期研究指出酵母菌valyl-tRNA synthetase (ValRS) 附加區段 (1-98) 具有非專一性的tRNA 鍵結活性 (Kd ~2 uM),此活性具有幫助aminoacylation的功能。而ValRS 的N端附加區段 (1-135) 融合到DNA結合蛋白LexA形成一個轉錄活化因子且其轉錄活性來自附加區段內的五個胺基酸 (WYDWW)。使用這五個胺基酸當作基礎,衍生出轉錄活性更強的7個色胺酸 (W7),它的活性是原本五個胺基酸的3倍。我們希望經由此研究更了解轉錄活化區段的一些生化特性及對轉錄活化機制有新的認識。經過數十年的研究,對於aminoacyl-tRNA synthetases (aaRSs)的結構與功能的理解已有長足進展。相較之下,對於他們的演化路徑仍然相當模糊,尤其是具有雙功能之基因,例如非鑑別的glutamyl-tRNA synthetase (non-discriminating GluRS; ND-GluRS) 它可同時將Glu 接到tRNAglu 或tRNAGln上。藍綠菌的GluRS 就是一個ND-GluRS它可以同時辨認tRNAglu (形成Glu-tRNAglu) 及tRNAgln (形成Glu-tRNAgln),我們發現這個 ND-GluRS可以取代酵母菌MSE1 基因 (轉譯出粒線體的GluRS ) 的功能,而粒線體 GluRS是一個鑑別的酵素,只能形成Glu-tRNAglu ,在 GluRS分子演化上這是一個有趣的發現。
The earlier studies suggested that the Ad of yeast valyl-tRNA synthetase (ValRS) (residues 1~98) possesses non-specific tRNA-binding activity (with a Kd of ~2 μM) that significantly contributes to tRNA binding and aminoacylation activities of the enzyme. The N-terminal domain (residues 1~135) of yeast ValRS can act as an transcription activation domain (AD) when fused to a sequence-specific DNA-binding domain (DBD) LexA, and this transcriptional activity is mainly attributed to a pentapeptide (WYDWW) close to the C-terminus of the N domain. Using this pentapeptide as a reference, a much more active peptide, heptatryptophan (W7), was devised. W7 produced activity ~3-fold higher than that of the native pentapeptide or the N domain. It is our hope that information obtained in this study will advance our understanding of the biochemical properties of an AD in general, and also provide new insights into the mechanisms of transcription activation in particular. After decades of investigation, knowledge of structure and functions of aminoacyl-tRNA synthetases (aaRSs) have progressed by leaps and bounds. However, their evolution paths are still obscure, especially for the dual-functional AARSs such as non-discriminating GluRS (ND-GluRS). It can charge both tRNAGlu and tRNAGln with Glu. Syncchocystis 6803 GluRS (SyGluRS) is an ND-GluRS enzyme that functions on its cognate tRNAGlu (Glu-tRNAGlu) and on noncognate tRNAGln.(Glu-tRNAGln). We find the ND-GluRS that it could rescue the growth defects of the GluRSm knockout strains (CSJ2). The finding might provide insights into the evolution of ND-GluRS and D-GluRS.
Barberis, A., Muller, C.W., Harrison, S.C., Ptashne, M. (1993) Delineation of an N-terminal region of transcription factors TFIIB. Proc Natl Acad Sci 90:5628–5632
Birner, P., Schindl, M., Obermair, A., Plank, C., Breitenecker, G. and Oberhuber, G. ( 2000) Overexpression of hypoxia-inducible factor 1alpha is a marker for an unfavorable prognosis in early-stage invasive cervical cancer Cancer Res. 60: 4693– 4696
Breton, R., Sanfacon, H., Papayannopoulos, I., Bienmann, K., and Lapointe, J. (1986) Glutamyl-tRNA synthetase of Escherichia coli. Isolation and primary structure of the gltX gene and homology with other aminoacyl-tRNA synthetases J. Biol. Chem. 261: 10610-10617
Carrozza, M. J., John, S., Sil, A. K., Hopper, J. E. and Workman, J. L. (2002) Gal80 confers specificity on HAT complex interactions with activators. J Biol Chem 277: 24648-24652.
Carter, C. W. and Jr., (1993) Cognition, mechanism, and evolutionary relationships in aminoacyl-tRNA synthetases. Annu Rev Biochem 62: 715-748.
Chang, C., Gonzalez, F., Rothermel, B., Sun, L., Johnston, S. A. and Kodadek, T. (2001) The Gal4 activation domain binds Sug2 protein, a proteasome component, in vivo and in vitro. J Biol Chem 276: 30956-30963.
Chang, C. P., Lin, G., Chen, S. J., Chiu, W. C., Chen, W. H. and Wang, C. C. (2008) Promoting the formation of an active synthetase/tRNA complex by a nonspecific tRNA-binding domain. J Biol Chem 283: 30699-30706.
Chang, K. J. and Wang, C. C. (2004) Translation initiation from a naturally occurring non-AUG codon in Saccharomyces cerevisiae. J Biol Chem 279: 13778-13785.
Chatton, B., Walter, P., Ebel, J. P., Lacroute, F. and Fasiolo, F. (1988) The yeast VAS1 gene encodes both mitochondrial and cytoplasmic valyl-tRNA synthetases. J Biol Chem 263: 52-57.
Chen, N.T. (2010) Identification of the mitochondrial targeting signal of yeast glutamyl-tRNA synthetase
Chen, S.J., Lee, C.Y., Lin, S.T., and Wang, C.C. (2011) Rescuing a dysfunctional homologue of a yeast glycyl-tRNA synthetase gene. ACS Chem. Biol. 6:1182-1187.
Chiu, W.C., Chang, C.P., Wen, W.L., Wang, S.W. and Wang, C.C. (2010) Schizosaccharomyces pombe possesses two paralogous valyl-tRNA synthetase genes of mitochondrial origin. Mol. Biol. Evol. 27:1415-1424.
Chiu, W. C., Chang C. P. and Wang, C. C. (2009) Evolutionary basis of converting a bacterial tRNA synthetase into a yeast cytoplasmic or mitochondrial enzyme. J Biol Chem 284: 23954-23960.
Cho, E.J. and Buratowski, S. (1999) Evidence that transcription factor IIB is required for a post-assembly step in transcription initiation. J Biol Chem 274(36):25807-13
Courey, A. J., Holtzman, D. A., Jackson, S. P. and Tjian, R. (1989) Synergistic activation by the glutamine-rich domains of human transcription factor Sp1. Cell 59: 827-836.
Curnow AW, Ibba M and Söll D (1996) tRNA-dependent asparagine formation, Nature 382: 589–590.
Dalla-Favera, R., Bregni, M., Erikson, J., Patterson, D., Gallo, R. C. and Croce, C. M. ( 1982) Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells Proc. Natl. Acad. Sci. U.S.A. 79: 7824– 7827
Daum G, P.Bohni, C., and Schatz G (1982) Import of Proteins into mitochondria J. Biol. Chem. 257:13028-13033
Deinert, K., Fasiolo, F., Hurt, E.C. and Simos, G. (2001) Arc1p organizes the yeast aminoacyl-tRNA synthetase complex and stabilizes its interaction with the cognate tRNAs, J. Biol. Chem. 276: 6000–6008.
Eriani, G., Delarue, M., Poch, O., Gangloff, J. and Moras, D. (1990) Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs, Nature 347: 203–206.
Feng, L., Sheppard, K., Namgoong, S., Ambrogelly, A., Polycarpo, C., Randau, L., Tumbula-Hansen, D. and Soll, D. (2004) Aminoacyl-tRNA synthesis by pre-translational amino acid modification. RNA Biol 1:16-20
Fields, S. and Song, O. (1989) A novel genetic system to detect protein-protein interactions. Nature 340: 245-246.
Francin, M., Kaminska, M., Kerjan, P. and Mirande, M. (2002) The N-terminal domain of mammalian Lysyl-tRNA synthetase is a functional tRNA-binding domain. J Biol Chem 277: 1762-1769.
Francklyn, C., Perona, J. J., Puetz, J. and Hou, Y. M. (2002) Aminoacyl-tRNA synthetases: versatile players in the changing theater of translation. RNA 8: 1363-1372.
Frechin, M., Senger, B., Brayé, M., Kern, D., Martin, R.P. and Becker, H.D. (2009) Yeast mitochondrial Gln-tRNA(Gln) is generated by a GatFAB-mediated transamidation. Genes Dev. 23:1119-1130.
Friend, S. H., Bernards, R., Rogelj, S., Weinberg, R. A., Rapaport, J. M., Albert, D. M. and Dryja, T. P. ( 1986) A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma Nature 323: 643– 646
Fuller, G. N., Su, X., Price, R. E., Cohen, Z. R., Lang, F. F., Sawaya, R. and Majumder, S. ( 2005) Many human medulloblastoma tumors overexpress repressor element-1 silencing transcription (REST)/neuron-restrictive silencer factor, which can be functionally countered by REST-VP16 Mol. Cancer Ther. 4: 343– 349
Galani, K., Grosshans, H., Deinert, K., Hurt, E.C. and Simos, G. (2001) The intracellular location of two aminoacyl-tRNA synthetases depends on complex formation with Arc1p, EMBO J. 20: 6889–6898.
Giege, R., Sissler, M. and Florentz, C. (1998) Universal rules and idiosyncratic features in tRNA identity. Nucleic Acids Res 26: 5017-5035.
Godinic, V., Mocibob, M., Rocak, S., Ibba, M., and Weygand-Durasevic, I. (2007) Peroxin Pex21p interacts with the C-terminal noncatalytic domain of yeast seryl-tRNA synthetase and forms a specific ternary complex with tRNA(Ser). FEBS J 274: 2788-2799.
Gouilleux-Gruart, V., Debierre-Grockiego, F., Gouilleux, F., Capiod, J. C., Claisse, J. F., Delobel, J. and Prin, L. ( 1997) Activated Stat related transcription factors in acute leukemia Leuk. Lymphoma 28: 83– 88
Graindorge, J.S., Senger, B., Tritch, D., Simos, G. and Fasiolo, F. (2005) Role of Arc1p in the modulation of yeast glutamyl-tRNA synthetase activity, Biochemistry 44:1344–1352.
Green, M. R. (2005) Eukaryotic transcription activation: right on target. Mol Cell 18: 399-402.
Guarente, L. (1993) Strategies for the identification of interacting proteins. Proc Natl Acad Sci U S A 90: 1639-1641.
Harbour, J. W. and Dean, D. C. (2000) The Rb/E2F pathway: expanding roles and emerging paradigms Genes Dev. 14: 2393– 2409
Hayashi, S. I., Eguchi, H., Tanimoto, K., Yoshida, T., Omoto, Y., Inoue, A., Yoshida, N. and Yamaguchi, Y. ( 2003) The expression and function of estrogen receptor alpha and beta in human breast cancer and its clinical application Endocr. Relat. Cancer 10: 193– 202
Heinlein, C. A. and Chang, C. ( 2004) Androgen receptor in prostate cancer Endocr. Rev. 25: 276– 308
Hellmuth, K., Lau, D.M., Bischoff, F.R., Kunzler, M., Hurt, E. and Simos, G. (1998) Yeast Los1p has properties of an exportin-like nucleocytoplasmic transport factor for tRNA, Mol. Cell. Biol. 18:6374–6386.
Hollstein, M. C., Metcalf, R. A., Welsh, J. A., Montesano, R. and Harris, C. C. ( 1990) Frequent mutation of the p53 gene in human esophageal cancer Proc. Natl. Acad. Sci. U.S.A. 87: 9958– 9961
Hollstein, M. C., Sidransky, D., Vogelstein, B. and Harris, C. C. ( 1991) p53 mutations in human cancers Science 253: 49– 53
Hou Y.M. and Schimmel P. (1988) A simple structural feature is a major determinant of the identity of a transfer RNA. Nature 333:140-145.
Ibba, M. and Söll, D. (2000) Aminoacyl-tRNA synthesis, Ann. Rev. Biochem. 69: 617–650.
Johnson, R., Spiegelman, B., Hanahan, D. and Wisdom, R. ( 1996) Cellular transformation and malignancy induced by ras require c-jun Mol. Cell. Biol. 16: 4504– 4511
Kaminska, M., Deniziak, M., Kerjan, P., Barciszewski, J. and Mirande, M. (2000) A recurrent general RNA binding domain appended to plant methionyl-tRNA synthetase acts as a cis-acting cofactor for aminoacylation. EMBO J 19: 6908-6917.
Kaminska, M., Shalak, V., and Mirande, M. (2001) The appended C-domain of human methionyl-tRNA synthetase has a tRNA-sequestering function. Biochemistry 40: 14309-14316.
Kaneko, T., Suzuki, T., Kapushoc, S.T., Rubio, M.A., Ghazvini, J., Watanabe, K., and Simpson, L. (2003) Wobble modification differences and subcellular localization of tRNAs in Leishmania tarentolae: Implication for tRNA sorting mechanism. EMBO J. 22: 657-667.
Karanasios, E., Boleti, H. and Simos, G. (2008) Incorporation of the Arc1p tRNA-binding domain to the catalytic core of MetRS can functionally replace the yeast Arc1p-MetRS complex, J. Mol. Biol. 381:763–771.
Karanasios, E., Simader, H., Panayotou, G., Suck, D. and Simos, G. (2007) Molecular determinants of the yeast Arc1p-aminoacyl-tRNA synthetase complex assembly, J. Mol. Biol. 374: 1077–1090.
Kornberg, R.D. (1998) Mechanism and regulation of yeast RNA polymerase II transcription. Cold Spring Harb Symp Quant Biol 63:229-32
Kuras, L. and Struhl, K. (1999) Binding of TBP to promoters in vivo is stimulated by activators and requires Pol II holoenzyme. Nature 399: 609-613.
Lamour V, Quevillon S, Diriong S, N’Guyen VC, Lipinski M and Mirande M. (1994) Evolution of the Glx-tRNA synthetase family: the glutaminyl enzyme as a case of horizontal gene transfer. Proc. Natl Acad. Sci. USA 91:8670-8674.
Lapointe, J. (1982) Study of the evolution of the genetic code by comparing the structural and catalytic properties of the aminoacyl-tRNA synthetases, Can. J. Biochem. 6: 471–474.
Lapointe, J., Duplain, L. and Proulx, M. (1986) A single glutamyl-tRNA synthetase aminoacylates tRNAGlu and tRNAGln in Bacillus subtilis and efficiently misacylates Escherichia coli tRNAGln1 in vitro. J. Bacteriol. 165: 88–93.
Lund, E., and Dahlberg, J. E. (1998) Proofreading and aminoacylation of tRNAs before export from the nucleus. Science 282 2082-2085.
Malempati, S., Tibbitts, D., Cunningham, M., Akkari, Y., Olson, S., Fan, G. and Sears, R. C. ( 2006) Aberrant stabilization of c-Myc protein in some lymphoblastic leukemias Leukemia 20: 1572– 1581
Marcelli, M., Ittmann, M., Mariani, S., Sutherland, R., Nigam, R., Murthy, L., Zhao, Y., DiConcini, D., Puxeddu, E., Esen, A., Eastham, J., Weigel, N. L. and Lamb, D. J. ( 2000) Androgen receptor mutations in prostate cancer Cancer Res. 60: 944– 949
Maréchal-Drouard, L., Weil, J. H. and Dietrich, A. (1993) Nuclear-encoded transfer RNAs in plant mitochondria. Annu. Rev. Cell. Biol. 8: 115-131.
Martinis, S. A. and Schimmel, P. (1996) in Escherichia coli and Salmonella Cellular and Molecular Biology, p. 887-901. Am. Soc. Microbiol., Washington, DC.
Martinis, S. A., Plateau, P., Cavarelli, J. and Florentz, C. (1999) Aminoacyl-tRNA synthetases: a family of expanding functions. Mittelwihr, France, October 10-15, 1999. EMBO J 18: 4591-4596.
Melillo, G. ( 2006) Inhibiting hypoxia-inducible factor 1 for cancer therapy Mol. Cancer Res. 4: 601– 605
Melnick, A. and Licht, J. D. ( 1999) Deconstructing a disease: RAR alpha, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia Blood 93: 3167– 3215
Mermod, N., O'Neill, E. A., Kelly, T. J. and Tijan, R. (1989) The proline-rich transcriptional activator of CTF/NF-I is distinct from the replication and DNA binding domain. Cell 58: 741-753.
Mirande, M., (1991) Aminoacyl-tRNA synthetase family from prokaryotes and eukaryotes: structural domains and their implications. Prog Nucleic Acid Res Mol Biol 40: 95-142.
Mirande, M., Cirakoglu, B. and Waller, J.P. (1982) Macromolecular complexes from sheep and rabbit containing seven aminoacyl-tRNA synthetases. III. Assignment of aminoacyl-tRNA synthetase activities to the polypeptide components of the complexes, J. Biol. Chem. 257:11056–11063.
Mirande, M., Lazard, M., Martinez, R., and Latreille, M. T. (1992) Engineering mammalian aspartyl-tRNA synthetase to probe structural features mediating its association with the multisynthetase complex. Eur. J. Biochem. 203: 459-466.
Nagao A, Suzuki T, Katoh T, Sakaguchi Y. and Suzuki T. (2009) Biogenesis of glutaminyl-mt tRNAGln in human mitochondria. Proc Natl Acad Sci USA 106:16209-14.
Nakamura, A., Yao, M., Chimnaronk, S., Sakai, N. and Tanaka, I. (2006) Ammonia channel couples glutaminase with transamidase reactions in GatCAB. Science 312:1954-1958.
Natsoulis, G., Hilger, F. and Fink, G. R. (1986) The HTS1 gene encodes both the cytoplasmic and mitochondrial histidine tRNA synthetases of S. cerevisiae. Cell 46: 235-243.
Negrutskii, B. S., Shalak, V. F., Kerjan, P., El'skaya, A. V. and Mirande, M. (1999) Functional interaction of mammalian valyl-tRNA synthetase with elongation factor EF-1alpha in the complex with EF-1H. J Biol Chem 274: 4545-4550.
Normanly,J., Ogden, R. C., Horvath,S. J. and Abelson, J. (1986) Changing the identity of a transfer RNA. Nature 321: 213-219
Nureki O, O’Donoghue P, Watanabe N, Ohmori A, Oshikane H, Araiso Y, Sheppard K, Söll D and Ishitani R. (2010) Structure of an archaeal non-discriminating glutamyl-tRNA synthetase: a missing link in the evolution of Gln-tRNAGln formation. Nucleic Acids Res. 38:7286-7297.
Oya, M., Ohtsubo, M., Takayanagi, A., Tachibana, M., Shimizu, N. and Murai, M. ( 2001) Constitutive activation of nuclear factor-kappaB prevents TRAIL-induced apoptosis in renal cancer cells Oncogene 20: 3888– 3896
Pandolfi, P. P. ( 2001) Transcription therapy for cancer Oncogene 20: 3116– 3127
Pelchat, M. and Lapointe, J. (1999) Aminoacyl-tRNA synthetase genes of Bacillus subtilis: organization and regulation. Biochem Cell Biol 77: 343-347.
Pinto, I., Ware, D. E. and Michael, H. (1992) The yeast SUA7 gene encodes a homolog of human transcription factor TFIIB and is required for normal start site selection in vivo. Cell 68(5):977-88
Poulaki, V., Mitsiades, C. S., Joussen, A. M., Lappas, A., Kirchhof, B. and Mitsiades, N. ( 2002) Constitutive nuclear factor-kappaB activity is crucial for human retinoblastoma cell viability Am. J. Pathol. 161: 2229– 2240
Ptashne, M. and Gann, A. (2002) Genes & Signals. Cold Spring Harbor Laboratory Press., New York, USA.
Pujol C., Bailly M., Kern D., Maréchal-Drouard L., Becker H. and Duchêne A.M. (2008) Dual-targeted tRNA-dependent amidotransferase ensures both mitochondrial and chloroplastic Gln-tRNAGln synthesis in plants. Proc. Natl. Acad. Sci.USA 105:6481–6485.
Rinehart J., Horn, E.K., Wei, D., Söll, D., and Schneider, A. 2004. Non-canonical eukaryotic glutaminyl- and glutamyl-tRNA synthetases form mitochondrial aminoacyl-tRNA in Trypanosoma brucei. J. Biol. Chem. 279: 1161-1166.
Sadowski, I., Ma, J., Triezenberg, S. and Ptashne, M. (1988) GAL4-VP16 is an unusually potent transcriptional activator. Nature 335: 563-564.
Salazar JC, Ahel I, Orellana O, Tumbula-Hansen D, Krieger R, Daniels L and Söll D. (2003) Coevolution of an aminoacyl-tRNA synthetase with its tRNA substrates. Proc. Natl Acad. Sci. USA 100:13863-13868.
Sauerwald, A., Zhu, W., Major, T.A., Roy, H., Palioura, S. and Jahn, D. (2005) RNA-dependent cysteine biosynthesis in Archaea, Science 307: 1969–1972.
Schimmel, P. (1989) Parameters for the molecular recognition of transfer RNAs. Biochemistry 28: 2747-2759
Schimmel, P., Giegé, R., Moras, D. and Yokoyama S. (1993) An operational RNA code for amino acids and possible relationship to genetic code. Proc. Natl Acad. Sci. USA 90:8763-8768.
Schimmel, P. and Wang, C. C. (1999) Getting tRNA synthetases into the nucleus. Trends Biochem Sci 24: 127-128.
Schön, A., Kannangara, C.G., Gough, S. and Söll, D. (1988) Protein biosynthesis in organelles requires misaminoacylation of tRNA, Nature 331: 187–190.
Sekine, S., Nureki, O., Dubois, D., Bernier, S., Chenevert, R. and Lapointe, J. (2003) ATP binding by glutamyl-tRNA synthetase is switched to the productive mode by tRNA binding, EMBO J. 22, pp. 676–688.
Sekine, S., Nureki, O., Sakamoto, K., Niimi, T., Tateno, M., Go, M., Kohno, T., Brisson, A., Lapointe, J. and Yokoyama, S. (1996) Major identity determinants in the ‘augmented D helix’ of tRNAGlu from Escherichia coli. J. Mol. Biol. 256, 685–700.
Sekine, S., Nureki, O., Shimada, A., Vassylyev, D.G. and Yokoyama, S. (2001) Structural basis for anticodon recognition by discriminating glutamyl-tRNA synthetase. Nat. Struct. Biol. 8:203–6
Shaw, S. P., Wingfield, J., Dorsey, M. J. and Ma, J. (1996) Identifying a species-specific region of yeast TF11B in vivo. Mol Cell Biol 16(7):3651-7
Simader, H., Hothorn, M., Kohler, C., Basquin, J., Simos, G. and Suck, D. (2006) Structural basis of yeast aminoacyl-tRNA synthetase complex formation revealed by crystal structures of two binary sub-complexes, Nucleic Acids Res. 34: 3968–3979.
Simos, G., Sauer, A., Fasiolo, F. and Hurt, E.C. (1998) A conserved domain within Arc1p delivers tRNA to aminoacyl-tRNA synthetases, Mol. Cell 1: 235–242.
Simos, G., Segref, A., Fasiolo, F., Hellmuth, K., Shevchenko, A., Mann, M. and Hurt, E. C. (1996) The yeast protein Arc1p binds to tRNA and functions as a cofactor for the methionyl- and glutamyl-tRNA synthetases. EMBO J 15: 5437-5448.
Simos, G., Tekotte, H., Grosjean, H., Segref, A., Sharma, K., Tollervey, D. and Hurt, E.C. (1996) Nuclear pore proteins are involved in the biogenesis of functional tRNA, EMBO J. 15: 2270–2284.
Skouloubris S, Ribas de Pouplana L, De Reuse H, Hendrickson TL. A noncognate aminoacyl-tRNA synthetase that may resolve a missing link in protein evolution. Proc. Natl Acad. Sci. USA 2003;100:11297-11302.
Song, J. I. and Grandis, J. R. ( 2000) STAT signaling in head and neck cancer Oncogene 19, 2489– 2495
Swairjo, M.A., Morales, A.J., Wang, C.C., Ortiz, A.R, and Schimmel, P. (2000) Crystal structure of trbp111: A structure-specific tRNA-binding protein, EMBO J. 19:6287–6298.
Tang, H. L., Yeh, L. S., Chen, N. K., Ripmaster, T., Schimmel, P. and Wang, C. C. (2004) Translation of a yeast mitochondrial tRNA synthetase initiated at redundant non-AUG codons. J Biol Chem 279: 49656-49663.
Traven, A., Jelicic, B. and Sopta, M. (2006) Yeast Gal4: a transcriptional paradigm revisited. EMBO Rep 7: 496-499.
Tschochner, H., Sayre, M.H., Flanagan, P.M., Feaver, W.J., Kornberg, R.D. (1992) Yeast RNA polymerase II initiation factor e: isolation and identification as the functional counterpart of human transcription factor IIB. Proc Natl Acad Sci U S A 89(23):11292-6
Van Aelst, L., Barr, M. Marcus, S. Polverino, A. and Wigler, M. (1993) Complex formation between RAS and RAF and other protein kinases. Proc Natl Acad Sci U S A 90: 6213-6217.
Venema, R. C., Peters, H. I., and Traugh, J. A. (1991) Phosphorylation of elongation factor 1 (EF-1) and valyl-tRNA synthetase by protein kinase C and stimulation of EF-1 activity.J. Biol. Chem. 266: 12574-12580.
Vogt, P. K. ( 2001) Jun, the oncoprotein Oncogene 20: 2365– 2377
Wang, C. C., Morales, A. J. and Schimmel, P. (2000) Functional redundancy in the nonspecific RNA binding domain of a class I tRNA synthetase. J Biol Chem 275: 17180-17186.
Wang, C. C. and Schimmel, P. (1999) Species barrier to RNA recognition overcome with nonspecific RNA binding domains. J Biol Chem 274: 16508-16512.
Wu, Y., Reece, R. J. and Ptashne, M. (1996) Quantitation of putative activator-target affinities predicts transcriptional activating potentials. EMBO J 15: 3951-3963.
Xin, C., Siu, T. C., Samuel, S., Sheung, T. F., Christopher, B., John, H., Kin-Man Lai, Jiafu, J., Sandrine, D., Irene, O.L. Ng, Matt van de Rijn, David B., and Patrick O. Brown (2002) Gene Expression Patterns in Human Liver Cancers Mol. Biol. Cell 13:6 1929-1939
Zenke, F. T., Engles, R., Vollenbroich, V., Meyer, J., Hollenberg, C. P. and Breunig, K. D. (1996) Activation of Gal4p by galactose-dependent interaction of galactokinase and Gal80p. Science 272: 1662-1665.