| 研究生: |
孫楊軼 Yang-Yi Sun |
|---|---|
| 論文名稱: |
福爾摩沙衛星一號與全球定位系統地面接收機觀測太陽活動極大期低緯電離層不規則體 Low latitude ionospheric irregularities observed by FORMOSAT-1 and GPS ground-based receivers during soloar maximum |
| 指導教授: |
劉正彥
Jann-Yenq Liu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 太空科學研究所 Graduate Institute of Space Science |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 希爾伯黃轉換 、低緯電離層不規則體 |
| 外文關鍵詞: | Hilbert-Huang Transform, Low latitude Ionospheric irregularities |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
全球定位系統(Global Positioning System, GPS)地面接收機的優點為能以高時間解析度長期連續觀測電離層全電子含量(Total Electron Content,TEC),缺點為無法進行海洋和偏遠沙漠等地區之觀測;反之,福爾摩沙衛星一號(FORMOSAT-1)之觀測可均勻涵蓋南北緯35°內,卻無法對固定位置進行連續觀測。本研究結合兩者,聯合觀測1999年3月11日至2004年6月15日太陽活動極大期間南北磁緯30°內電離層不規則體(ionospheric irregularities)的日變化、季變化、經度變化與磁暴的影響。資料分析是利用希爾伯黃轉換(Hilbert-Huang Transform, HHT)的瞬時特性,計算福衛一號正離子濃度數據中週期短於25分鐘波動的瞬時總能。另一方面,使用雜訊輔助篩濾程序(noise- assisted sifting process)去除GPSTEC數據內中尺度移行電離層擾動(Middle Scale Traveling Ionospheric Disturbance, MSTID)的影響,用於計算GPS相位擾亂指數(phase fluctuation index)。最後比較瞬時總能與相位擾亂指數,探討低緯電離層不規則體強度隨時間的改變與空間的分佈,結果顯示不規則體的強度與其產生機率呈正相關。比對44個Dst超過-100的磁暴(magnetic storm)案例與GPS相位擾亂指數長期觀測資料發現,磁暴對於低緯電離層不規則體的成長具有催生和抑制的效應。
A ground-based receiver of the global positioning system (GPS) can easily probe the ionosphere, except desert and oceanic areas, with a high temporal resolution. By contrast, a satellite orbiting observes large area (for example, FORMOSAT-1 covers the ionosphere within +/- 35°) and, however its revisit time generally is rather long. In this study, seasonal and geographical variations as well as geomagnetic storm signatures in ionospheric irregularities within +/- 35° are examined by employing worldwide ground-based GPS receivers and FORMOSAT-1 during the solar maximum period of 1999/1/27-2004/6/17. The Hilber-Huang transform is first applied to compute the instantaneous total power of waves with period less than 25 minutes of the ion density recorded by FORMOSAT-1 and to remove middle and large scale travel ionospheric disturbances (MSTID) in the ionospheric total electron content derived from the ground-based GPS receivers. Results show that the spatial distributions of the FORMOSAT-1 total power generally agree with those of the GPS TEC phase fluctuation in various seasons. Moreover, a long-tern observation in the GPS TEC phase fluctuation indicates that magnetic storms can either trigger or suppress low latitude ionospheric irregularities.
Aarons, J., M. Mendillo, and R. Yantosca (1996), GPS phase fluctuations in the equatorial region during the MISETA 1994 campaign, J. Geophys. Res., 101, 26,851–26,862.
Aarons, J. (1997), Global positioning system phase fluctuations at auroral latitudes, J. Geophys. Res., 102, 17219 – 17231.
Abalde, J. R., Y. Sahai, P. R. Fagundes, F. Becker-Guedes, J. A. Bittencourt, V. G. Pillat, W. L. C. Lima, C. M. N. Candido, and T. F. de Freitas (2009), Day-to-day variability in the development of plasma bubbles associated with geomagnetic disturbances,J. Geophys. Res., 114, A04304, doi:10.1029/2008JA013788.
Booker, H. G., and H. W. Wells (1938), Scattering of radio waves by the F region ionosphere, J. Geophys. Res., 43, 249-256.
Chen, W. S., C. C. Lee, J. Y. Liu, F. D. Chu, and B. W. Reinisch (2006), Digisonde spread F and GPS phase fluctuations in the equatorial ionosphere during solar maximum, J. Geophys. Res., 111, A12305, doi:10.1029/2006JA011688.
Cohen L. (1995). Time-Frequency Analysis. Englewood Cliffs, NJ: Prentice-Hall
Davies K. (1990), Ionospheric Radio, Peter Peregrinus, London, UK.
Dungey, J. W. (1956), Convective diffusion in equatorial F-region, J. Atmos. Terr. Phys., 9, 304-310.
E. O. Brigham (1974), The Fast Fourier Transform,Prentice Hall,Englewood Cliffs,New Jersey.
Farley, D. T., B. B. Balsley, R. F. Woodman, and J. P. McClure (1970), Equatorial spread F: Implications of VHF radar observations, J. Geophys. Res., 75, 7199-7216.
Farley, D. T., E. Bonelli, B. G. Fejer, and M. F. Larsen (1986), The prereversal enhancement of the zonal electric field in the equatorial ionosphere, J. Geophys. Res., 91, 13,723.
Huang, N. E., Z. Shen, S. R. Long, M. C.Wu, H. H. Shih, Q. Zheng, N.-C.Yen, C. C. Tung, and H. H. Liu (1998), The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis, Proc. R. Soc. London, Ser. A, 454, 903–993.
Huang, N. E., Z. Shen, R. S. Long (1999),: A new view of nonlinear water waves–the Hilbert spectrum, Ann. Rev. Fluid Mech., 31, 417-457.
Huang, C. M., A. D. Richmond, and M.-Q. Chen (2005), Theoretical effects of geomagnetic activity on low-latitude ionospheric electric fields, J. Geophys. Res., 110, A05312, doi:10.1029/2004JA010994.
Huang, C. M., and M. Q. Chen (2008), Formation of maximum electric potential at the geomagnetic equator by the disturbance dynamo, J. Geophys. Res., 113, A03301, doi:10.1029/2007JA012843.
Huang, C. Y., W. J. Burke, J. S. Machuzak, L. C. Gentile, and P. J. Sultan (2001), DMSP observations of equatorial plasma bubbles in the topside ionosphere near solar maximum, J. Geophys. Res., 106(A5), 8131–8142.
Hofmann-Wellenhof, B., H. Lichtenegger, and J. Collins (1992), GPS Theory and Practice, 2nd version, Springer-Verlag, Wien, New York.
Kamide, Y., et al. (1998), Current understanding of magnetic storms: Storm-substorm relationships, J. Geophys. Res., 103(A8), 17,705–17,728.
Kelley, M. C., B. G. Fejer, and C. A. Gonzales (1979), An explanation for anomalous equatorial ionospheric electric fields associated with a northward turning of the interplanetary magnetic field, Geophys. Res. Lett., 6(4), 301–304.
Kelley, M. C., and R. A. Heelis (1989), The Earth’s Ionosphere, Plasma Physicsb and Electrodynamics, Academic Press, San Diego, California, USA.
Kelley, M. C., and T. Maruyama (1992), A Diagnostic Model for Equatorial Spread F, 2, The Effect of Magnetic Activity, J. Geophys. Res., 97(A2), 1271–1277.
Kallenrode M. (1998) Space physics : an introduction to plasmas and particles in the heliosphere and magnetospheres,Berlin New York.
Maruyama, N., A. D. Richmond, T. J. Fuller-Rowell, M.V.Codrescu, S. Sazykin, F. R. Toffoletto, R. W. Spior and G. H. Millward (2005), Interaction between direct penetration and disturbance dynamo electric fields in the storm-time equatorial ionosphere, Geophys. Res., 32, L17105.
McClure, J. P., W. B. Hanson, and J. H. Hoffman (1977), Plasma bubbles and irregularities in the equatorial ionosphere, J. Geophys. Res., 82, 2650-2656.
McClure, J. P., S. Singh, D. K. Bamgboye, F. S. Johnson, and Hyosub Kil (1998), Occurrence of equatorial F region irregularities: Evidence for tropospheric seeding, J. Geophys. Res., 103, 29,119-29,135.
Mendillo, M., Lin, B., Aarons, J. (2000), The application of GPS observations to equatorial aeronomy, Radio Sci., 35,885-904.
Pi, X., A. J. Mannucci, U. J. Lindqwister, and C. M. Ho (1997), Monitoring of global ionospheric irregularities using the worldwide GPS network, Geophys. Res. Lett., 24, 2283-2286.
Ratcliffe, J. A.(1972), An Introduction to the Ionosphere and Magnetosphere, Cambridge, UK,
Rastogi, R. G., J.P. Mullen, and E. MacKenzie (1981), Effect of geomagnetic activity on equatorial radio VHF scintillations and spread F, J. Geophys. Res., 86, 3661.
Richmond, A. D., et al. (1980), An empirical model of quiet-day ionospheric electric fields at middle and low latitudes, J. Geophys. Res., 85, 4658– 4664, doi:10.1029/JA085iA09p 04658 .
Richmond, A. D., C. Peymirat, and R. G. Roble (2003), Long-lasting disturbances in the equatorial ionospheric electric field simulated with a coupled magnetosphere-ionosphere-thermosphere model, J. Geophys. Res., 108(A3), 1118, doi:10.1029/2002JA009758.
Rino, C. L., R. T. Tsunoda, J. Petriceks, R. C. Livingston, M. C. Kelley, and K. D. Baker (1981), Simultaneous rocket-borne beacon and in situ measurements of equatorial spread F: Intermediate wavelength results, J. Geophys. Res., 86, 2411.
Schunk, R. W., and A. F. Nagy (2000), Ionosphere: Physics, Plasma Physics, and Chemistry, Cambridge University Press, Cambridge, UK.
Su, S.-Y., C. H. Liu, H. H. Ho, and C. K. Chao (2006), Distribution characteristics of topside ionospheric density irregularities: Equatorial versus midlatitude regions, J. Geophys. Res., 111, A06305, doi:10.1029/2005JA011330.
Tsunoda, R. T. (1985), Control of the seasonal and longitudinal occurrence of equatorial scintillations by the longitudinal gradient in integrated E region Pedersen conductivity, J. Geophys. Res., 90, 447.
Wanninger, L (1993). Ionospheric monitoring using IGS data. Paper presented at the 1993 Berne IGS Workshop, Berne, Switzerland.
Weber, E. J., J. Buchau, R. H. Eather, and S. B. Mende (1978), North-south aligned equatorial airglow depletions, J. Geophys. Res., 93, 712-716.
Woodman, R. F., and C. La Hoz (1976), Radar observations of F region equatorial irregularities, J. Geophys. Res., 81, 5447-5466.
Wu, Z., Huang, N. E, S. R. Long, and C.-K. Peng (2007): On the trend, detrending, and the variability of nonlinear and non-stationary time series, Proc. Natl. Acad. Sci. USA., 104, 14889-14894.
Wu, Z., and N. E. Huang (2004), A study of the characteristics of white noise using the empirical mode decomposition method, Proc. R. Soc., Ser. A, 460, 1597–1611.
Wu, Z., and N. E Huang (2009), Ensemble Empirical Mode Decomposition: a noise-assisted data analysis method. Advances in Adaptive Data Analysis. Vol.1, No.1. 1-41.
Yeh, H. C., S. Y. Su, Y. C. Yeh, J. M. Wu, R. A. Heelis and B. J. Holt (1999a), Scientific Mission of the IPEI Payload Onboard ROCSAT-1, TAO supplementary issue, 19-42.
Yeh, H. C., S. Y. Su, R. A. Heelis and J. M. Wu (1999b), The ROCSAT-1 IPEI preliminary results: Vertical ion drift statistics, TAO, Vol. 10, 805-820.
蔡和芳(1999),全球定位系統觀測電離層赤道異常之研究,國立中央大學太空科學研究所博士論文,中壢.
Space Physics Interactive Data Resource (SPIDR)
http://spidr.ngdc.noaa.gov
Scripps Orbit and Permanent Array Center(SOPAC)
http://sopac.ucsd.edu
The International GNSS Service (IGS)
http://igscb.jpl.nasa.gov
GoddardSpace Flight Center(GSFC)
http://omniweb.gsfc.nasa.gov
Wikipedia
http://zh.wikipedia.org
IPEI/SDDC
http://csrsddc.csrsr.ncu.edu.tw/