| 研究生: |
邱俊銘 Jun-Ming Qiu |
|---|---|
| 論文名稱: |
H2O 冰晶光子作用之溫度效應研究 |
| 指導教授: | 易台生 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 水 、星際冰晶 、光化作用 、光脫附作用 、紅外光譜 、真空紫外光 、質譜儀 、伽利略衛星 |
| 外文關鍵詞: | water, interstellar ice, photolysis, photo-desorption, infrared spectrum, VUV, QMS, Galilean moons |
| 相關次數: | 點閱:25 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
天文學家對太空環境觀測結果中,普遍發現構成星際冰晶最主要的成份為H2O冰晶,並在極低溫(<10 K)的冷星雲環境中仍可觀測到氣相的H2O,表示並非熱效應致使H2O冰晶脫附,其主要成因為光子或是高能粒子作用導致H2O冰晶的脫附行為。本論文即探討純H2O冰晶在不同生成溫度條件下,在真空紫外光照射後之光脫附作用及光化生成機制的差異。
本論文使用微波氫氣放電管模擬太空環境中的真空紫外光源,搭配四極質譜儀及紅外光譜儀,對真空紫外光照射H2O冰晶的光脫附行為及光化產物的生成機制和產量加以分析。並利用雷射干涉系統觀察冰晶厚度和隨溫度變化之光學性質。實驗結果中光脫附量會隨著冰晶生成溫度上升而增大。而光化產物則因為冰晶生成溫度提高反而衰減了。
實驗結果發現當H2O冰晶生成厚度超過30 ML後其厚度已不會影響H2O光脫附量之變化,其光脫附量約為0.052 molecules/photon
在真空紫外光照射低溫的H2O冰晶情況下,觀測到光脫附物種有 H2、O、OH、H2O與O2,其中光脫附量最大的為H2,而OH和H2O隨著冰晶生成溫度上升而光脫附量提高,但變化不若O和O2明顯。O和O2隨著冰晶生成溫度上升至50 K後光脫附量大幅的增加。而從O和O2的光脫附量質譜訊號比例和純氧實驗時的裂解比例比較之,我們發現隨著冰晶生成溫度上升,氧原子會更容易結合成氧分子再脫附離開H2O冰晶表面。
OH dangling bond隨著冰晶生成溫度或照光時間的上升而衰減,H2、H2O2、HO2、O2等光化產物的生成情形皆隨著冰晶溫度上升而下降。從光化路徑及H2O2、O2生成的情形,配合光脫附實驗的結果,可歸結出O原子因為溫度增加使得機動力上升,並以競爭者的角色抑止了H2O2的生成情形。而HO2則需要含有大量O2和H2O的環境下較易生成。從光脫附的實驗中,當H2O冰晶生成溫度上升至高溫時,O2的光脫附量大幅上升暗示了留存在冰晶的O2光化產物減少。
H2O冰晶隨著溫度的從低溫(14 K)上升至高溫(150 K)有著孔隙多寡、光學性質或結構上的變化,而在雷射干涉系統、質譜及紅外光譜的實驗中,觀測在溫度區間147–155 K中光程差的變化暗示了H2O冰晶在此溫度區間光學性質或結構正在進行異變。
The astronomical observations have shown that the main composition of interstellar ice is water. Astronomers observed H2O in gas phase in cold clouds (<10 K), it means that the ultraviolet photons and cosmic rays can induce H2O ice desorption in cold clouds, because the thermal desorption is negligible in those cold regions. In our study, we tried to understand the vacuum ultraviolet (VUV) photo-desorption process and VUV photolysis of pure H2O ice at different temperature conditions.
In this study, we used microwave-discharge hydrogen-flow lamp (MDHL) to mimic the interstellar UV field. A quadrupole mass spectrometer (QMS) was employed to detect the desorbed species during irradiation and warm-up periods. The Fourier transform infrared spectroscopy (FTIR) was used to monitor the variation of absorption intensity of H2O ice and products during VUV irradiation period. The laser interference system was used to monitor the ice thickness and optical properties. Experimental results show that the photodesorption yield of H2O ice increases while the temperature of deposited H2O ice increases, but the trend of production yield of products as a function of temperature is contrary to photodesorption yield of H2O ice.
When the thickness of H2O ice is thicker than 30 ML, the photo-desorption yield is independent with thickness, and the photo-desorption yield of H2O ice is about 0.052 molecules/photon.
The ice photo-desorption of H2O ice was studied at astronomy relevant temperatures (14 - 110 K). The most abundant desorbed species is H2. The ion signal of desorbed OH increases while temperature increases as well as desorbed H2O. O atom is active while temperature increases, the ion signals of O and O2 are obvious stronger than H2O while temperature increases, and ion signals of O & O2 increase rapidly at temperature above 50 K. Because the O atom is more active at higher temperature and easy to react with H2O2 to form O2.
The absorption intensity of OH dangling bond becomes weaker at higher deposition temperature and after VUV irradiation. We observed the productions of H2, H2O2, HO2, O2 decrease while deposition and irradiation temperature increases. From chemical reaction pathway and the experimental results, we found that O atom as a competitor to reduce the production of H2O2. The results also imply that HO2 will be produced by photon irradiation of H2O ice containing O2 in high abundance.
H2O ice can increase its average kinetic energy, and the structure of H2O ice transfers from amorphous phase to cubic phase at higher temperature. The comparison of the results of laser interference system, QMS and FTIR, the structure or optical property of H2O ice is changing at 147 – 155 K range.
1. Boulanger, F., P. Cox, and A.P. Jones, Infrared Space Astronomy, Today and Tomorrow. Course 7: Dust in the Interstellar Medium. Vol. 25. 2000.
2. C. R. Cowley, An introduction to cosmochemistry. 1995: Cambridge University Press.
3. Greenberg, J.M., The role of grains in molecular chemical evolution. Astrophysics and Space Science, 1986. 128: p. 17.
4. Spitzer, L.J. and D. Bates, The density of molecules in interstellar space. The Astrophysical Journal, 1951. 113: p. 441.
5. Gaustad, J.E., The opacity of diffuse cosmic matter and the early stages of star formation. The Astrophysical Journal, 1963. 138: p. 1050.
6. Kleinmann, D.E. and F.J. Low, Discovery of an infrared nubula in Orion. The Astrophysical Journal, 1967. 149: p. L1.
7. Williams, J.P., L. Blitz, and M.C. F., The Structure and Evolution of Molecular Clouds: from Clumps to Cores to the IMF, in PROTOSTARS AND PLANETS IV, V. Mannings, A. Boss, and S. Russell, Editors. 2000, University of Arizona Press. p. 97.
8. Genzel, R. and J. Stutzki, The orion molecular cloud and star-formin region. Annual Review of Astronomy and Astrophysics, 1989. 27: p. 41.
9. Sanders, D.B., N.Z. Scoville, and P.M. Solomon, Giant molecular clouds in the Galaxy. II - characteristics of discrete features. The Astrophysical Journal, 1985. 289: p. 373.
10. Churchwell, E., C.M. Walmsley, and D.O.S. Wood, Hot, dense, molecular gas associated with ultracompact H II regions. Astronomy & Astrophysics, 1992. 253: p. 541.
11. Olmi, L., R. Cesaroni, and C.M. Walmsley, Ammonia and methyl cyanide in hot cores. Astronomy & Astrophysics, 1993. 276: p. 489.
12. Haff, P.K., A. Eviatar, and G.L. Siscoe, Ring and plasma: The enigmae of Enceladus. Icarus, 1983. 56: p. 426-438.
13. Delsemme, A.H., In Comets, ed. L.L. Wilkening. 1982, Tucson: Univ. of Arizona Press.
14. Mendis, D.A., H.L.F. Houpis, and M.L. Marconi, The Physics of Comets. Fund. Cosmic Phys., 1985. 10: p. 1-380.
15. Eisner, J.A., Water vapour and hydrogen in the terrestrial-planet-forming region of a protoplanetary disk. Nature, 2007. 447: p. 562-564.
16. Piétu, V., A. Dutrey, and S. Guilloteau, Probing the structure of protoplanetary disks: a comparative study of DM Tau, LkCa 15 and MWC 480. Astronomy & Astrophysics, 2007. 467: p. 163.
17. Dominik, C.P.D.C., Dust coagulation in protoplanetary disks: A rapid depletion of small grains. Astronomy & Astrophysics, 2005. 434(3): p. 971-986.
18. Caselli, P., et al., First detection of water vapor in a pre-stellar core. The Astrophysical Journal Letters, 2012. 759(2): p. L37.
19. Piétu, V., et al., Resolving the inner dust disks surrounding LkCa 15 and MWC 480 at mm wavelengths. Astronomy & Astrophysics, 2006. 460: p. L43.
20. Water in L1544. [Credit:ESA/Herschel/SPIRE/HIFI/Caselli et al. ]. Available from: http://sci.esa.int/herschel/50909-water-in-l1544/.
21. Moore, M.H., R. Khanna, and B.J. Donn, Studies of proton irradiated H2O+CO2 and H2O+CO ices and analysis of synthesized molecules. Geophys, 1991. 96: p. 17541-17545.
22. Wu, C.Y.R. and D.L. Judge, Multichannel processes in the vacuum ultraviolet photon excitation of molecular system. Trends Chem. Phys., 1991. 1: p. 55-68.
23. Westley, M.S., et al., Ultraviolet photodesorption from water ice. Planetary and Space Science, 1995. 43: p. 1311-1315.
24. Gerakines, P.A., et al., The Infrared Band Strengths of H2O, CO, and CO2 in Laboratory Simulations of Astrophysical Ice Mixtures. Astronomy & Astrophysics, 1995. 296.
25. Abe, Y. and T. Matsui, Early evolution of the earth: Accretion, atmosphere formation, and thermal history. Journal of Geophysical Research, 1986. 91(B13): p. E291-E302.
26. Miller, S.L., Production of Amino Acids Under Possible Primitive Earth Conditions. Science, 1953. 117: p. 528.
27. Dishoeck, E.F.v., Astrochemistry of dense protostellar and protoplanetary environments in Astrophysics in the Next Decade, H.A. Thronson, M. Stiavelli, and A.G.G.M. Tielens, Editors. 2009, Springer Verlag. p. 187-212.
28. Chaplin, M. Water Structure and Science - Water Phase Diagram. Available from: http://www.lsbu.ac.uk/water.
29. Mason, N.J., et al., VUV spectroscopy and photo-processing of astrochemical ices: an experimental study. Faraday Discussions, 2006. 133: p. 311.
30. Hollenbach, D.J. and A.G.G.M. Tielens, Photodissociation regions in the interstellar medium of galaxies. Review of Modern Physics, 1999. 71(1): p. 173-230.
31. Maréchal, P., Y.P. Viala, and J.J. Benayoun, Chemistry and rotational excitation of O2 in interstellar clouds. Astronomy & Astrophysics, 1997. 324: p. 221-236.
32. Goldsmith, P.F., et al., HERSCHEL * MEASUREMENTS OF MOLECULAR OXYGEN IN ORION Astronomy & Astrophysics, 2011. 737(2): p. 96.
33. Snell, R.L., et al., Water Abundance in Molecular Cloud Cores. The Astrophysical Journal Letters, 2000. 539(2): p. L101.
34. Goldsmith, P.F., et al., O2 in Interstellar Molecular Clouds. The Astrophysical Journal Letters, 2000. 539(2): p. L123.
35. Pagani, L., et al., Low upper limits on the O2 abundance from the Odin satellite. Astronomy and Astrophysics, 2003. 402(3): p. L77-L81.
36. Herschel found oxygen molecules near the Orion nebula. [credit:ESA/NASA/JPL-Caltech]. Available from: http://spaceinimages.esa.int/Images/2011/08/Herschel_found_oxygen_molecules_near_the_Orion_nebula.
37. E. A. Bergin, e.a., Implications of submillimeter wave astronomy staellite observations for interstellar chemistry and star formation. The Astrophysical Journal, 2000. 539: p. 129-132.
38. Hollenbach, D., et al., Water, O2, and ice in molecular clouds. The Astrophysical Journal, 2009. 690: p. 1497.
39. Johnson, R.E. and T.I. Quickenden, Photolysis and radiolysis of water ice on outer solar system bodies. Journal of Geophysical Research, 1997. 102(E5): p. 10985-10996.
40. Cooper, P.D., M.H. Moore, and R.L. Hudson, Radiation chemistry of H2O + O2 ices. Icarus, 2008. 194(1): p. 379-388.
41. Orlando, T.M. and M.T. Sieger, The role of electron-stimulated production of O2 from water ice in the radiation processing of outer solar system surfaces. Surface Science, 2003. 528(1-3): p. 1-7.
42. Öberg, K.I., et al., Photodesorption of Ices. Ii. H2O and D2O. The Astrophysical Journal, 2009. 693(2): p. 1209-1218.
43. Öberg, K.I., Complex processes in simple ices: laboratory and observational studies of gas-grain interactions during star formation , Ph.D. Thesis, Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden, The Netherlands. 2009.
44. Westley, M.S., R.A. Baragiola, and R.E. Johnson, Photodesorption from low-temperature water ice in interstellar and circumsolar grains. Nature, 1995. 373: p. 405-407.
45. Galilei, G., Sidereus Nuncius. Vol. 14-16. 1989, Chicago & London: University of Chicago Press.
46. Hall, D.T., et al., The Far-Ultraviolet Oxygen Airglow Of Europa And Ganymede. The Astrophysical Journal, 1998. 499: p. 475-481.
47. Kivelson, M.G., et al., Galileo Magnetometer Measurements: A Stronger Case for a Subsurface Ocean at Europa. Science, 2000. 289: p. 1340-1343.
48. Schenk, P.M., et al., Ages and interiors: the cratering record of the Galilean satellites, in In: Jupiter. The planet, satellites and magnetosphere, F. Bagenal, T.E. Dowling, and W.B. McKinnon, Editors. 2004, Cambridge University Press: Cambridge. p. 427-456.
49. Vidal, R.A., Oxygen on Ganymede: Laboratory Studies. Science, 1997. 276(5320): p. 1839-1842.
50. Cooper, J., Energetic Ion and Electron Irradiation of the Icy Galilean Satellites. Icarus, 2001. 149(1): p. 133-159.
51. Hall, D.T., et al., Detection of an oxygen atmosphere on Jupiter's moon Europa. Science, 1995. 373: p. 677-679.
52. Moons of the Solar System. [Credit:NASA]. Available from: http://solarsystem.nasa.gov/multimedia/display.cfm?IM_ID=2823.
53. Leto, G. and G.A. Baratta, Ly-α photon induced amorphization of Ic water ice at 16 Kelvin. Astronomy and Astrophysics, 2003. 397(1): p. 7-13.
54. Okabe, H., Photochemistry of Small Molecules. 1978, New York: Wiley.
55. Roremus, R.H., Rates of Phase Transformations. 1985, New York: Academic.
56. Famá, M., et al., Radiation-induced amorphization of crystalline ice. Icarus, 2010. 207(1): p. 314-319.
57. Jenniskens, P. and D.F. Blake, Crystallization of Amorphous Water Ice in the Solar System. The Astrophysical Journal, 1996. 473: p. 1104-1113.
58. Gredel, R., et al., Cosmic-ray-induced Photodissociation and Photoionization Rates of Interstellar Molecules. The Astrophysical Journal, 1989. 347: p. 289-293.
59. Öberg, K.I., et al., Photodesorption of CO ice. The Astrophysical Journal, 2007. 662: p. L23-L26.
60. Öberg, K.I., E.F. van Dishoeck, and H. Linnartz, Photodesorption of ices I: CO, N2 and CO2. Astronomy & Astrophysics, 2009b. 496: p. 281-293.
61. Zhen, J. and H. Linnartz, UV-induced photodesorption and photochemistry of O2 ice. Monthly Notices of the Royal Astronomical Society, 2013. 437(4): p. 3190-3201.
62. Fayolle, E.C., et al., CO Ice Photodesorption: A Wavelength-Dependent Study. The Astrophysical Journal, 2011. 739: p. L36.
63. Masson, A., Free and Supported Metal Clusters: Structures and Reactivity. 1989. 48: p. 665-675.
64. Hudgins, D.M., et al., Mid- and Far-Infrared Spectroscopy of ices: Optical constants and integrated absorbances. The Astrophysical Journal Supplement Series, 1993. 86: p. 713-870.
65. Muñoz Caro, G.M., et al., New results on thermal and photodesorption of CO ice using the novel InterStellar Astrochemistry Chamber (ISAC). Astronomy & Astrophysics, 2010. 522: p. A108.
66. Laufer, D., E. Kochavi, and A. Bar-Nun, Structure and dynamics of amorphous water ice. Physical Review B, 1987. 36(17): p. 9219-9227.
67. Fox, M.A. and James K. Whitesell, Mass Spectroscopy, in Organic Chemistry. 2004, Jones & Bartlett Publishers. p. 205.
68. Watanabe, N., T. Horii, and A. Kouchi, Measurements of D2 Yields From Amorphous D2O ice by ultraviolet irradiation at 12K. The Astrophysical Journal, 2000. 541: p. 772-778.
69. Kimmel, G.A., et al., Low-energy electron-stimulated production of molecular hydrogen from amorphous water ice. The Journal of Chemical Physics, 1994. 101(4): p. 3282.
70. Cooper, P.D., M.H. Moore, and R.L. Hudson, Infrared Detection of HO2 and HO3 Radicals in Water Ice. The Journal of Physical Chemistry A Letters, 2006. 110: p. 7985-7988.
71. Tielens, A.G.G.M. and W. Hagen, Model calculations of the molecular composition of interstellar grain mantles. Astronomy & Astrophysics, 1982. 114: p. 245-260.
72. Andersson, S., et al., Molecular dynamics study of photodissociation of water in crystalline and amorphous ice. The Journal of Chemical Physics, 2006. 124: p. 4715.
73. Andersson, S. and E.F. van Dishoeck, Photodesorption of water ice. Astronomy and Astrophysics, 2008. 491(3): p. 907-916.
74. Rowland, B. and J.P. Devlin, Spectra of dangling OH groups at ice cluster surfaces and within pores of amorphous ice. Journal of Chemical Physics, 1991. 94: p. 812.
75. Rowland, B., M. Fisher, and J.P. Devlin, Probing icy surfaces with the dangling-OH-mode absorption: Large ice clusters and microporous amorphous ice. Journal of Chemical Physics, 1991. 95: p. 1378.
76. Palumbo, M.E., The morphology of interstellar water ice. Journal of Physics: Conference Series, 2005. 6: p. 211-216.
77. Cruz-Diaz, G.A., G.M.M. Caro, and A. Jiménez-Escobar, UV-irradiation of H2O ice under ultra-high-vacuum conditions: product formation and photodesorption, in European Planetary Science Congress. 2012.
78. Léger, A., et al., The 3.1 μm Absorpption in Molecular Clouds Is Probably Due to Amorphous H2O Ice. Astronomy & Astrophysics, 1979. 79: p. 256-259.
79. Leviton, D.B., B.J. Frey, and T.J. Madison, Temperature-dependent refractive index of CaF2 and Infrasil 301. Proc. SPIE 6692, 2007: p. 669204.
80. Jacob, M.V., et al., Microwave characterisation of CaF2 at cryogenic temperatures using a dielectric resonator technique. Journal of the European Ceramic Society, 2003. 23(14): p. 2617-2622.
81. Corning Inc., CaF2 Product Sheet. 2003.
82. Jenniskens, P. and D.F. Blake, Structural Transitions in Amorphous Water Ice and Astrophysical Implications. Science, 1994. 265: p. 753-756.
83. Kuroda, A.K.T., Amorphization of cubic ice by ultraviolet irradiation. Nature, 1990. 344: p. 134-135.
84. Brown, W.L., et al., Erosion and molecular formation in condensed gas films by electronic energy loss of fast ions. Nuclear Instruments and Methods in Physics Research, 1982. 198(1): p. 1-8.
85. Bahr, D.A. and R.A. Baragiola, Photodesorption of Solid CO2 by Lyα. The Astrophysical Journal, 2012. 761(1): p. 36.
86. Cruz Diaz, G.A., et al., Astronomy & Astrophysics, 2013. submitted.
87. Arasa, C., et al., Molecular dynamics simulations of the ice temperature dependence of water ice photodesorption. Journal of Chemical Physics, 2010. 132: p. 184510.
88. Jenniskens, P., et al., Liquid water in the domain of cubic crystalline ice I[sub c]. The Journal of Chemical Physics, 1997. 107(4): p. 1232.
89. Jenniskens, P., et al., High-Density amorphous ice, the frost on interstellar grains. The Astrophysical Journal, 1995. 455: p. 389-401.
90. Schutte, P.A.G.W.A. and P. Ehrenfreund, Ultraviolet processing of interstellar ice analogs I. Pure ices. Astronomy & Astrophysics, 1996. 312: p. 289-305.
91. Moore, M., IR Detection of H2O2 at 80 K in Ion-Irradiated Laboratory Ices Relevant to Europa. Icarus, 2000. 145(1): p. 282-288.
92. Dullemond, C.P., C. Dominik, and A. Natta, Passice irradiated circumstellar disks with an inner hole. The Astrophysical Journal, 2001. 560: p. 957-969.
93. Dullemond, C.P. and C. Dominik, Flaring vs. self-shadowed disks: The SEDs of Herbig Ae/Be stars. Astronomy and Astrophysics, 2004. 417(1): p. 159-168.
94. Keane, J.V., et al., Bands of solid CO2 in the 2-3 μm spectrum of S 140:IRS1. Astronomy and Astrophysics, 2001. 375(3): p. L43-L46.
95. Calvin, W.M., R.E. Johnson, and J.R. Spencer, O2 on ganymede : Spectral characteristics and plasma formation machanisms. Geophysical Research Letters, 1996. 23(6): p. 673-676.
96. Sieger, M.T., W.C. Simpson, and T.M. Orlando, Production of O2 on icy surfaces by electronic excitation of low-temperature water ice. Nature, 1998. 394: p. 554-556.
97. Orton, G.S., et al., Galileo photopolarimeter-radiometer observations of Jupiter and the Galilean satellites. Science, 1996. 274: p. 389-391.
98. Hanel, R., et al., Infrared observations of the jovian system from Voyager 2. Science, 1979. 206(952-956).
99. Johnson, R.E., et al., Radiation effects on the surfaces of the Galilean satellites, in In Jupiter: Planet, Satellites, and Magnetosphere, F. Bagenal, W. McKinnon, and T. Dowling, Editors. 2003, Cambridge University Press: Cambridge, MA.