| 研究生: |
梁能 Neng Liang |
|---|---|
| 論文名稱: |
基樁軸向承載之依時行為 Time-dependent Behavior of Axially Loaded Pile |
| 指導教授: |
張惠文
Huei-Wen Chang 黃俊鴻 Jin-Hung Hwang |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 193 |
| 中文關鍵詞: | 對應原理 、t-z曲線 、潛變 、樁基礎 、模型試驗 、直剪試驗 |
| 外文關鍵詞: | correspondence principle, t-z curve, creep, pile foundation, direct shear test, model test |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為瞭解軸向承載基樁於長期載重作用下之行為,本研究以室內模型試驗及粘彈理論之數值分析程式,探討土體的潛變行為對基樁於長期承載下之樁身與樁底承載力分配、荷載傳遞行為、以及樁體沉陷反應之影響。
室內試驗以直剪儀對台北盆地粉質黏土及石門粉土進行樁–土界面之長期受剪潛變試驗,試驗結果顯示樁–土界面之剪動位移率將隨所受剪應力準位的增加而上升。隨著荷載作用時間的增加,剪動位移率與時間之關係於雙對數座標中呈近似線性遞減的趨勢,此遞減斜率與樁–土界面所受之覆土應力、應力準位大小無關。在相同應力準位情況下,不同性質土體之剪動位移率不同,但其位移率於雙對數座標中之遞減斜率相似。室內模型試驗及現地樁載重試驗結果均發現,在樁頂定荷載持續作用的情況下,樁頂位移有潛變現象,樁體確有將載重自淺層向深層傳遞的現象,使得樁體底部之承載呈現隨時間增加的趨勢。模型基樁試驗結果更顯示上部樁土界面摩擦力會隨時間減小,下部樁土界面之摩擦力會隨時間增加,使得摩擦力沿著樁身的分佈趨於均勻一致。
而在數值分析部份,本研究以黏彈理論中之對應原理(correspondence principle),透過黏彈塑性之t-z曲線,建立一套較簡化之軸向荷載基樁依時反應分析模式,可適用於多層土壤以及土體強度隨深度增加的情況。經與有限元素程式及模型試驗結果比對,此一簡化分析模式確能合理呈現軸向承載基樁於定荷載持續作用下之依時反應。
With a series of model tests and numerical analysis, pile behavior under sustained axial load are investigated to comprehend with the affections of soil creep on pile load distribution, load transfer and settlement.
From the interface direct-shear test, it is revealed that the displacement rate is proportional to the stress level of the spacemen. As loading time elapsed, the logarithm of displacement rate decreases linearly with the logarithm of time. The slope of this relationship is essentially independent of the normal stress and stress level. Under identical stress level, different soil presents different displacement rate, but the relationships between the logarithm displacement rate and the logarithm of time are similar. From both in-situ and model pile tests, the incremental head settlement and tip load under sustained axial load are discovered, which shows that loading is transferred gradually from shallow to deeper layers. Furthermore, it is revealed from the model pile tests that skin friction decreases in the upper part and increases in the lower part of pile which forming a more uniform distribution of skin friction.
With correspondence principle, a simplified time-dependent pile behavior analysis program is established utilizing viscoelastic–perfect plastic t–z curve. The situations of multiple layers and soil strength increasing with depth are taken into account in this program. Comparing with FEM program and pile test results, this program can rationally simulate the pile behavior under sustained axial load.
Azzouz, A. S., Baligh, M. M., and Whittle, A. J., “Shaft Resistance of Piles in Clay,” Journal of Geotechnical Engineering, ASCE, Vol. 116, No. 2, pp.205-221 (1989).
Baligh, M. M., “Strain Path Method,” Journal of Geotechnical Engineering, ASCE, Vol. 111, No. 9, pp.1108-1136 (1985).
Barden, L., “Consolidation of Clay with Non-linear Viscosity,” Geotechnique, Vol. 15, pp. 345-362 (1965).
Barden, L., “Time Dependent Deformation of Normally Consolidated Clays and Peats,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 95, No. SM1, pp.1-31 (1969).
Booker, J. R., and Poulos, H. G., “Analysis of Creep Settlement of Pile Foundations,” Journal of Geotechnical Engineering, ASCE, Vol. 102, No. GT1, pp.1-14 (1976).
Christensen, R. W., and Wu, T. H., “Analysis of Clay Deformation as a Rate Process,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 90, No. SM6, pp.125-157 (1964).
Cooke, R. W., Price, G., and Tarr, K., “Jacked Piles in London Clay: a Study of Load Transfer and Settlement under Working Conditions,” Geotechnique, Vol. 29, No. 2, pp.113-147 (1979).
Coyle, H. M., and Reese, L. C., “Load Transfer for Axially Loaded Piles in Clay,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 92, No. SM2, pp.1-26 (1966).
Edil, T. B., and Mochtar, I. B., “Creep Response of Model Pile in Clay,” Journal of Geotechnical Engineering, ASCE, Vol. 114, No. 11, pp.1245-1260 (1988).
Feda, J, Creep of Soils and Related Phenomena, Developments in Geotechnical Engineering, No. 68, Elsevier, London (1992).
Flügge, W., Viscoelasticity, 2nd Ed., Springer-Verlag, New York (1975).
Garlanger, J. E., “The Consolidation of Soils Exhibiting Creep under Constant Effective Stress,” Geotechnique, Vol. 22, No.1, pp.71-78 (1972).
Guo, W. D., “Visco-elastic Load Transfer Models for Axially Loaded Piles,” International Journal of Numerical and Analytical Method in Geomechanics, Vol. 24, pp.135-163 (2000).
Keedwell, M. J., Rheology and Soil Mechanics, Elsevier Applied Science Publishers, London (1984).
Kulhawy, F. H., Mayne, P. W., Manual on Estimating Soil Properties for Foundation Design, Report, Electric Power Research Institute, Palo Alto, California (1990).
Lin, H. D., and Wang, C. C., “Stress-Strain-Time Function of Clay,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 124, No. 4, pp.289-296 (1998).
Mitchell, J. K., “Shearing Resistance of Soils as a Rate Process,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 90, No. SM1, pp.29-61 (1964).
Mitchell, J. K., Campanella, R.G, and Singh, A, “Soil Creep as a Rate Process,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 94, No. SM1, pp.231-253 (1968).
Mochtar, I. B., An Experimental Study of Skin Friction and Creep of Piles in Clay, Ph.D Thesis, University of Wisconsin-Madison (1985).
Muramaya, S., and Shibata, T., “Flow and Stress Relaxation of Clays,” Proceedings of the Symposium on Rheology and Soil Mechanics, J. Kravtchenko & P. M. Sirieys , Eds., Grenoble, France (1964).
Murayama, S., “Stress Strain-Time Behavior of Soils Subjected to Deviatoric Stress,” Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico, Vol. 1, pp.297-305 (1969).
Orrje, O., and Broms, B., “Effects of Pile Driving on Soil Properties,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 93, No. SM5, pp.59-73 (1967).
Poulos, H. G., “Pile Behavior – Theory and Application,” Geotechnique, Vol. 39, No. 3, pp.365-415 (1989).
Poulos, H. G., and Davis, E. H., “The Settlement Behavior of Single Axially Loaded Incompressible Piles and Piers,” Geotechnique, Vol. 18, pp.351-371 (1968).
Poulos, H. G., and Davis, E. H., Pile Foundation Analysis and Design, Wiley, New York (1980)
Roy, M., and Lemieux, M., “Long-term Behavior of Reconsolidated Clay around a Driven Pile,” Canadian Geotechnical Journal, Vol. 23, pp.23-29 (1986).
Seed, H. B, and Reese, L. C., “The Action of Soft Clay along Friction Piles,” Transactions, ASCE, Vol. 842, pp. 371-754 (1955).
Shibata, T., and Karube, D., “Creep Rate and Creep Strength of Clays,” Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico, Vol. 1, pp.361-367 (1969).
Singh, A., and Mitchell, J. K., “General Stress-Strain-Time Function for Soils,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 94, No. SM1, pp.21-46 (1968).
Tian, W. M., Silva, A. J., Veyera G. E., and Sadd, M. H., “Drained Creep of Undisturbed Cohesive Marine Sediments,” Canadian Geotechnical Journal, Vol. 31, pp.841-855 (1994).
Vyalov, S. S., and Meschyan, S. R., “Creep and Long-term Strength of Soils Subjected to Variable Load,” Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico, Vol. 1, pp.423-431 (1969).
Vyalov, S. S., Rheological Fundamentals of Soil Mechanics, Developments in Geotechnical Engineering, No. 36, Elsevier, London (1986).
Wahls, H. E., “Analysis of Primary and Secondary Consolidation,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 88, No. SM6, pp.207-231 (1962).
Walker, L. K., “Secondary Compression in the Shear of Clays,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 95, No. SM1, pp.167-188 (1969).
王建智,「深開挖引致之軟弱黏土不排水潛變行為之研究」,博士論文,國立台灣科技大學營建工程技術研究所,台北 (1997)。
王建智,「黏性土壤之雙曲線依時模式」,中國土木水利工程學刊,第13卷,第3期,第523-531頁 (2001)。
王維漢,「單樁負摩擦力之行為研究」,碩士論文,國立中央大學土木工程研究所,中壢 (1997)。
池蘭生,「擴座基樁之力學行為」,碩士論文,國立台灣科技大學營建工程技術研究所,台北 (1993)。
佐藤 悟,「基礎樁之支持力機構 (1)」,土木技術,第20卷,第1期,第69-80頁 (1965)。
佐藤 悟,「基礎樁之支持力機構 (2)」,土木技術,第20卷,第2期,第110- 120頁 (1965)。
佐藤 悟,「基礎樁之支持力機構 (3)」,土木技術,第20卷,第3期,第97-111頁 (1965)。
佐藤 悟,「基礎樁之支持力機構 (4)」,土木技術,第20卷,第4期,第114- 112頁 (1965)。
佐藤 悟,「基礎樁之支持力機構 (5)」,土木技術,第20卷,第5期,第106-112頁 (1965)。
林宏達、王建智,「側向解壓引致之台北粉質粘土之不排水潛變」,中國土木水利工程學刊,第9卷,第2期,第201-209頁 (1997)。
林宏達、王建智,「率相關之不排水潛變模式」,中國土木水利工程學刊,第10卷,第3期,第419-427頁 (1998)。
林宏達、王建智,「粘性土壤之三次潛變模式之研究」,中華民國力學期刊,第13卷,第3期,第213-224 (1997)。
林宏達、白朝金,「台北粉質黏土之潛變特性探討」,中國土木水利工程學刊,第7卷,第1期,第35-44頁 (1995)。
張增宏,「基樁之位移與摩擦性質之關係」,碩士論文,國立中央大學土木工程研究所,中壢 (1994)。
黃俊鴻、王祖義、方仲欣,「台北軟弱黏土打擊樁承載力之時間效應」,中興工程,第40期,第27-36頁 (1993)。
熊雲嵋、蔡熙昀、張秋旺,「土壤剪應力–位移曲線與基樁t–z曲線」,土木水利,第22卷、第3期,第3-15頁 (1995)。
譚志豪,「黏土壓縮與壓密行為之研究」,博士論文,國立中央大學土木工程研究所,中壢 (2002)。
蘇世豐、熊雲嵋、蕭博元、許世宗,「垂直載重樁之荷重–沉陷關係」,地工技術,第61卷,第51-58頁 (1997)。