跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳奕傑
I-Chieh Chen
論文名稱: 室內照明情境下之靜態工作專注力評估
Evaluation of Static Work Attention Under Indoor Lighting Environments
指導教授: 陳怡君
Yi-Chun Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 131
中文關鍵詞: 照明腦電圖經驗模態分解法邊際頻譜頻帶功率機率密度函數接收者操作特徵曲線
外文關鍵詞: lighting, EEG, empirical mode decomposition (EMD), marginal spectrum, band power, probability density function (PDF), ROC curve
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在21世紀初照明實質影響生理回饋的研究被提出後,注重燈具色溫、光譜演色性的議題便大量浮上檯面,因此,探討不同照明因子對使用者生
    理與精神狀況的影響成為人因工程中相當重要的一部份。本研究係以辦公室環境為實驗空間,以可調變的平板燈營造均勻且可自由控制的照明情境。實驗以招募受試者進行模擬辦公工作的靜態文書作業為主,作業內容與問卷評估等流程沿用先前團隊人員所設計之成果,惟生理因素的客觀評估工具本研究新增了生理回饋儀來進行腦波量測,結合既有之工具設計新的人因評估流程以及各項評估指標。
    實驗主要利用生理回饋儀、LED 可調式平板燈、閃光融合儀、評估問卷等工具。生理回饋儀負責量測受試者於平板燈調控情境下的腦波訊號,匯入Matlab 軟體進行包含經驗模態分解法(Empirical mode decomposition, EMD)、傅立葉轉換(Fourier transform, FT) 及希爾伯特-黃轉換(Hilbert-Huang transform, HHT)、機率密度函數(Probability density function, PDF)、接收者操作特徵曲線(Receiver operating characteristic curve, ROC curve) 等運算,最後則將接收者操作特徵曲線的曲線下面積(Area under the curve, AUC) 依情境排列作為客觀指標;以問卷評估所得之評分,亦依情境排列後成為主觀指標。主客觀指標將分別匯入SPSS 軟體進行變異數分析,檢視指標於12 種情境間是否具顯著差異,以進一步探討主客觀指標的情境分布狀況。實驗結果在客觀指標方面,受試者在高色溫低照度時較高;主觀指標方面,受試者評分則較青睞高色溫高照度。但在視覺舒適度的評估上,客觀結果與主觀結果則可相呼應,以3840 K 和750 lux 的照明情境下為最佳。


    After the proposal of the study of how lighting influencing humans’ biofeedback at the beginning of 21th century, topics about color temperature, power spectral
    density, or color rendering are becoming more and more popular. Therefore, research on how lighting factors affecting users’ physiological situations is absolutely
    an important part in human-factor engineering. This study takes the office environment as the experimental area. Several controllable and uniform lighting setups are designed by using the LED flat panel lights. The experiments recruit participants and request them to complete some documental works and questionnaires, which are referenced from the results before. The objective tool added in this study is the biofeedback device, which could measure human electroencephalography (EEG). The new experimental flow is based on the combination of EEG measurement and other evaluation indices. The experimental materials include the biofeedback device, the controllable
    flat panel lights, the critical flicker fusion frequency (CFF) instrument, and the self-evaluation questionnaires. The biofeedback device could measure the users’ EEG signals. Then the signals are collected into Matlab and going through empirical mode decomposition (EMD), Fourier transform (FT), Hilbert-Huang transform (HHT), probability density function (PDF), and receiver operating characteristic curve (ROC curve) analysis. The area under curves (AUCs) are calculated and arranged to become the objective indices. On the other hand, the scores of the
    questionnaires are also arranged in order of the lighting environments, and then become the subjective indices. Both of them are collected into SPSS for the twoway analysis of variance (ANOVA) to check if there is any significance among the 12 lighting environments. Results show that in the objective part, the area under curves have great performance in higher color temperature and lower illuminance. According to the subjective indices, participants prefer both higher color temperature and illuminance. Yet according to the evaluation of visual comfort, both the objective and subjective measures have the best result in the lighting environment of 3840 K and 750 lux.

    中文摘要............................................................................................................. i Abstract ............................................................................................................... iii 致謝..................................................................................................................... v 目錄..................................................................................................................... vii 圖目錄................................................................................................................. xi 表目錄................................................................................................................. xvi 一、緒論............................................................................................. 1 1.1 研究背景與動機. . . . . . . . . . . . . . . . . . . . . . . 1 1.2 研究目的. . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 論文架構. . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3.1 研究假設. . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3.2 研究限制. . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3.3 研究方法與步驟. . . . . . . . . . . . . . . . . . . . . . . 4 二、文獻探討..................................................................................... 6 2.1 照明對於生理之影響. . . . . . . . . . . . . . . . . . . . 6 2.1.1 非視覺系統. . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 視覺疲勞判別. . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.1 疲勞之主觀評估. . . . . . . . . . . . . . . . . . . . . . . 15 2.2.2 閃光融合閾值. . . . . . . . . . . . . . . . . . . . . . . . 16 2.3 生理回饋與腦波. . . . . . . . . . . . . . . . . . . . . . . 17 2.3.1 腦電圖. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.2 腦電位量測. . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3.3 腦波資訊分析. . . . . . . . . . . . . . . . . . . . . . . . 24 2.4 希爾伯特-黃轉換(Hilbert-Huang Transform, HHT) . . . . 27 2.4.1 經驗模態分解法(Empirical Mode Decomposition, EMD) . 27 2.4.2 希爾伯特轉換(Hilbert transform) . . . . . . . . . . . . . . 31 2.5 心理學實驗設計. . . . . . . . . . . . . . . . . . . . . . . 33 2.5.1 拉丁方格設計. . . . . . . . . . . . . . . . . . . . . . . . 34 三、研究方法與步驟......................................................................... 36 3.1 實驗設計. . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.1.1 專注力前測實驗. . . . . . . . . . . . . . . . . . . . . . . 36 3.1.2 照明實驗一. . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.1.3 照明實驗二. . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.1.4 照明實驗三. . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2 實驗設備. . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2.1 Anteya DCP-40W-P平板燈. . . . . . . . . . . . . . . . . 39 3.2.2 NeXus-10 MKII生理回饋儀. . . . . . . . . . . . . . . . . 41 3.2.3 閃光融合儀. . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.2.4 視力檢查儀. . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.3 照明實驗一. . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.3.1 實驗環境. . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.3.2 實驗流程. . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.3.3 實驗內容. . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.4 照明實驗二. . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.5 照明實驗三. . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.6 實驗資料分析. . . . . . . . . . . . . . . . . . . . . . . . 51 3.6.1 移動區塊自體抽樣與經驗模態分解法. . . . . . . . . . . 53 3.6.2 頻帶功率與機率密度函數. . . . . . . . . . . . . . . . . . 55 3.6.3 接收者操作特徵曲線. . . . . . . . . . . . . . . . . . . . 57 3.6.4 重複量數變異數分析. . . . . . . . . . . . . . . . . . . . 59 四、實驗結果與討論......................................................................... 62 4.1 實驗結果. . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.1.1 照明實驗一. . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.1.2 照明實驗二. . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.1.3 照明實驗三. . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.1.4 傅立葉轉換與希爾伯特-黃轉換結果討論. . . . . . . . 84 4.1.5 照明實驗總結. . . . . . . . . . . . . . . . . . . . . . . . 86 4.1.6 主觀問卷評估. . . . . . . . . . . . . . . . . . . . . . . . 94 4.1.7 閃光融合閾值. . . . . . . . . . . . . . . . . . . . . . . . 100 4.2 主客觀結果討論. . . . . . . . . . . . . . . . . . . . . . . 102 五、結論與未來展望......................................................................... 103 5.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.2 未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . 104 參考文獻............................................................................................................. 105 附錄一主觀評估問卷內容................................................................................ 110 附錄二中英文閱讀測驗內容範例.................................................................... 112 附錄三臺大研究倫理審查核可證明書............................................................ 113

    [1] S. Nakamura, M. Senoh, and T. Mukai. P-GaN/N-InGaN/N-GaN doubleheterostructure
    blue-light-emitting diodes. Japanese Journal of Applied
    Physics, 32(Part 2, No.1A/B):L8–L11, 1993.
    [2] H. R. Taylor et al. The long-term effects of visible light on the eye. Archives
    of Ophthalmology, 110(1):99–104, 1992.
    [3] K. E. West et al. Blue light from light-emitting diodes elicits a dosedependent
    suppression of melatonin in humans. Journal of Applied Physiology,
    110(3):619–626, 2011.
    [4] G. Tosini, I. Ferguson, and K. Tsubota. Effects of blue light on the circadian
    system and eye physiology. Molecular Vision, 22:61–72, 2016.
    [5] W. J. M. van Bommel. Non-visual biological effect of lighting and the practical
    meaning for lighting for work. Applied Ergonomics, 37(4):461–466,
    2006.
    [6] W. J. M. van Bommel and G. J. van den Beld. Lighting for work: a review of
    visual and biological effects. Lighting Research and Technology, 36(4):255–
    266, 2004.
    [7] Y. B. Shin et al. The effect on emotions and brain activity by the direct/
    indirect lighting in the residential environment. Neuroscience Letters,
    584(1):28–32, 2015.
    [8] T. Deguchi and M. Sato. The effect of color temperature of lighting
    sources on mental activity level. The Annals of Physiological Anthropology,
    11(1):37–43, 1992.
    [9] 林孟劭. 室內工作與閱讀活動之智慧照明調控研究. 國立中央大學,碩
    士論文, 民國105 年.
    [10] 許仕勳. 動態照明在辦公環境應用之可行性評估與眼動儀偵測視覺疲
    勞之研究. 國立中央大學,碩士論文, 民國104年.
    [11] A. F. Jackson and D. J. Bolger. The neurophysiological bases of EEG and
    EEG measurement: A review for the rest of us. Psychophysiology, 51, 2014.
    [12] CNS 12112 中華民國國家標準. 室內工作場所照明. 經濟部標準檢驗局,
    2012.
    [13] M. S. Mott et al. Illuminating the effects of dynamic lighting on student
    learning. SAGE Open, 2, 2012.
    [14] Koninklijke Philips Electronics N.V. Feel good, learn better with SchoolVision,
    2011.
    [15] I. Hirotake et al. Intellectual productivity under task ambient lighting. Lighting
    Research and Technology, 50, 2016.
    [16] J. Y. Shin et al. Analysis of the effect on attention and relaxation level by
    correlated color temperature and illuminance of LED lighting using EEG
    signal. Journal of the Korean Institute of IIIuminating and Electrical Installation
    Engineers, 27(5):9–17, 2013.
    [17] D. M. Berson, F. A. Dunn, and M. Takao. Phototransduction by retinal ganglion
    cells that set the circadian clock. Science, 295(5557):1070–1073, 2002.
    [18] D. C. Fernandez et al. Light Affects Mood and Learning through Distinct
    Retina-Brain Pathways. Cell, 175(1):71–84.e18, 2018.
    [19] P. Khademagha et al. Implementing non-image-forming effects of light in the
    built environment: A review on what we need. Building and Environment,
    108(1):263–272, 2016.
    [20] LumosTech. The science behind adjusting your circadian rhythm with light.
    Source: https://reurl.cc/g7qE3b.
    [21] C. Lok. Vision science: Seeing without seeing. Nature, 469:284–285, 2011.
    [22] J.-H. Chu. CHAPTER1 認識色彩. Source: https://reurl.cc/Wd2Vge.
    [23] J. R. Wilson and E. N. Corlett. Evaluation of Human Work, 2nd Edition.
    Taylor and Francis, 1995.
    [24] D. A. Robinson. The oculomotor control system: A review. Proceedings of
    the IEEE, 56(6):1032–1049, 1968.
    [25] L. Poppi and A. Brichta. How do our bodies balance themselves? Source:
    https://reurl.cc/Nj7Eo6.
    [26] Lateral geniculate nucleus. Source: https://reurl.cc/qdl3qg.
    [27] Z. X. Zhu and J. M.Wu. On the standardization of VDT’s proper and optimal
    contrast range. Ergonomics, 33(7):925–932, 1990.
    [28] S. Taptagaporn and S. Saito. How display polarity and lighting conditions
    affect the pupil size of VDT operators. Ergonomics, 33(2):201–208, 1990.
    [29] 毛義方、徐雅媛. 勞動疲勞測定方法技術與職場疲勞管理指引修正研
    究. 行政院勞工委員會勞工安全衛生研究所, 2013.
    [30] H. Yoshitake. Relations between the symptoms and the feeling of fatigue.
    Ergonomics, 14(1):175–186, 1971.
    [31] R. Likert. A technique for the measurement of attitudes. Archives of psychology.
    Columbia university, 1932.
    [32] M. A. Robinson. Using multi-item psychometric scales for research and
    practice in human resource management. Human Resource Management,
    57(3):739–750, 2018.
    [33] S. W. Davis. Auditory and visual flicker-fusion as measures of fatigue. The
    American Journal of Psychology, 68(4):654–657, 1955.
    [34] S. Mack et al. Principles of Neural Science, Fifth Edition. Principles of
    Neural Science. McGraw-Hill Education, 2013.
    [35] Suzana H.-H. The human brain in numbers: a linearly scaled-up primate
    brain. Frontiers in Human Neuroscience, 3:31, 2009.
    [36] Human EEG with prominent alpha rhythm. Source: https://reurl.cc/QdvOoZ.
    [37] L. F. Haas. Hans Berger (1873–1941), Richard Caton (1842–1926), and
    electroencephalography. Journal of Neurology, Neurosurgery and Psychiatry,
    74(1):9–9, 2003.
    [38] H. Marzbani, H. R. Marateb, and M. Mansourian. Methodological note:
    Neurofeedback: A comprehensive review on system design, methodology
    and clinical applications. Basic and Clinical Neuroscience Journal, 7:143–
    158, 2016.
    [39] G. Buzs´aki. Rhythms of the Brain. Oxford ; New York : Oxford University
    Press, 2006.
    [40] B. McDermott et al. Gamma Band Neural Stimulation in Humans and the
    Promise of a New Modality to Prevent and Treat Alzheimer’s Disease. Journal
    of Alzheimer’s Disease, 65(2):363–392, 2018.
    [41] P. Adjamian et al. Induced stimulus-dependent Gamma oscillations in visual
    stress. European Journal of Neuroscience, 20:587–592, 2004.
    [42] A. Hadjipapas et al. Stimuli of varying spatial scale induce gamma activity
    with distinct temporal characteristics in human visual cortex. NeuroImage,
    35(2):518–530, 2007.
    [43] N. Kort et al. Bihemispheric network dynamics coordinating vocal feedback
    control. Human Brain Mapping, 37(4):1474–1485, 2016.
    [44] S. Siuly, Y. Li, and Y. C. Zhang. EEG Signal Analysis and Classification:
    Techniques and Applications. Springer International Publishing, 2016.
    [45] A. B. Usakli. Improvement of EEG signal acquisition: An electrical aspect
    for state of the art of front end. Computational Intelligence and Neuroscience,
    2010, 2009.
    [46] Mind Media B.V. User Manual for the NeXus-10. Schepersweg 2B NL-
    6049CV ROERMOND-HERTEN, 2005.
    [47] G. H. Klem et al. The ten-twenty electrode system of the International Federation.
    The International Federation of Clinical Neurophysiology. Electroencephalography
    and clinical neurophysiology. Supplement, 52:3–6, 1999.
    [48] International 10-20 system for EEG. Source: https://reurl.cc/lVxMOA.
    [49] M. Teplan. Fundamental of EEG measurement. Measurement Science Review,
    2, 2002.
    [50] U. R. Acharya et al. Automated EEG analysis of epilepsy: A review.
    Knowledge-Based Systems, 45:147 – 165, 2013.
    [51] N. Pradhan and D. N. Dutt. Data compression by linear prediction for storage
    and transmission of EEG signals. International Journal of Bio-Medical
    Computing, 35(3):207 – 217, 1994.
    [52] E. Pereda et al. Non-linear behaviour of human EEG: fractal exponent versus
    correlation dimension in awake and sleep stages. Neuroscience Letters,
    250(2):91–94, 1998.
    [53] S. Osowski et al. Epileptic seizure characterization by Lyapunov exponent
    of EEG signal. COMPEL - The international journal for computation
    and mathematics in electrical and electronic engineering, 26(5):1276–1287,
    2007.
    [54] S. J. Geng et al. EEG non-linear feature extraction using correlation dimension
    and Hurst exponent. Neurological Research, 33(9):908–912, 2013.
    [55] N. Kannathal et al. Entropies for detection of epilepsy in EEG. Computer
    Methods and Programs in Biomedicine, 80(3):187–194, 2005.
    [56] K. Natarajan et al. Nonlinear analysis of EEG signals at different mental
    states. Biomedical engineering online, 3:7, 2004.
    [57] N. E. Huang et al. The empirical mode decomposition and the Hilbert spectrum
    for nonlinear and non-stationary time series analysis. Proceedings of the
    Royal Society of London. Series A: Mathematical, Physical and Engineering
    Sciences, 454:903–995, 1998.
    [58] Mr. Opengate. Time Series Analysis - Introduction to Stationary Time Series.
    Source: https://reurl.cc/ZO6zo3.
    [59] 陳佑榮. 應用希爾伯特黃轉換以C 語言環境開發腦機介面訊號處理. 國
    立中央大學,碩士論文, 民國105 年.
    [60] A. Kim. Wilhelm Maximilian Wundt. In E. N. Zalta, editor, The Stanford
    Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University,
    2016.
    [61] K. A. Carlson. An Introduction to Statistics: An Active Learning Approach.
    SAGE Publications, 2016.
    [62] C. J. Goodwin. 心理學研究: 方法與設計. 五南圖書出版公司, 2002.
    [63] NeuroSky. MindWave Mobile: User Guide, 2015.
    [64] MindWave mobile. Source: https://reurl.cc/1x5pWD.
    [65] Reader’s Digest Editors. Can You Spot the Difference in These 10 Pictures?
    Source: https://reurl.cc/r88xnr.
    [66] MindMedia NeXus-10 MKII. Source: https://reurl.cc/oLaqbD.
    [67] 錫昌科技股份有限公司人體研究產品資訊. Source:
    https://reurl.cc/D9V8M6.
    [68] E. R. Girden. ANOVA: Repeated measures. Sage Publications, 1992.

    QR CODE
    :::