| 研究生: |
洪國騰 Guo-Teng Hong |
|---|---|
| 論文名稱: |
電濕式驅動系統應用於微奈米級圖樣之製作 Fabrication of Micro/Nano patterns with EWOD Actuation |
| 指導教授: |
楊宗勳
Tsung-Hsun Yang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 自組裝分子膜 、電濕式 、奈米球微影術 、軟蝕刻微影 |
| 外文關鍵詞: | EWOD, NSL, Soft Lithography, SAM |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
奈米科技的發展將是二十一世紀的主流技術,其中微奈米圖案成像技術,亦將隨著各種功能元件的需求而朝更快速發展。微製造技術難度與日俱增,其中關鍵就是光學微影方法中,由於光繞射的現象而不易得到奈米級解析度圖形,同時大部分光學微影方法之奈米圖案成像技術的光源設備均極為昂貴。因此一個具高解析度之奈米級尺寸,又具有方便且不會昂貴的製程,為半導體製程未來重要技術。因此本論文提出以電濕式 (electrowetting on dielectric, EWOD) 驅動系統與奈米球微影術 (Nanosphere Lithography, NSL) 相結合,並運用軟蝕刻微影 (Soft Lithography) 與自組裝分子膜 (Self-Assembled Monolayer, SAM) 兩種方式,製作出微奈米級之圖樣。
Nanotechnology has become as the mainstream technology in the twenty-first century. Especially, the micro/nano patterning technology is also under rapid development to the needs of the various functional elements. However, the micro-fabrication technology, which is critical lithography for pattern transferring, is getting more difficult. In optic lithography, the diffraction makes it not easy to obtain the patterns with the fine structures in the nanometer scale. Moreover, the light sources for optical lithography are extremely expensive. Therefore, it is an urgent and interesting subject to develop a new process of high resolution in micro/nano-scale but convenient to implement and not expensive in cost. In this thesis, it is proposed to integrate the electrowetting on dielectric (EWOD) actuation and the nanosphere lithography (NSL). Finally, the application of practical fabrication has also been demonstrated with aids of the soft lithography and the self-assembled monolayer (SAM).
[1]Gordon E. Moore, “Cramming more components onto integrated circuits,” Electronics, Vol. 38, No. 8, April 19 (1965).
[2]Youngjo Tak and Kijung Yong, “Controlled Growth of Well-Aligned ZnO Nanorod Array Using a Novel Solution Method,” The Journal of Physical Chemistry B 109 (41), pp. 19263-19269 (2005).
[3]Yong-Jin Kim, Chul-Ho Lee, Young Joon Hong and Gyu-Chul Yi, “Controlled selective growth of ZnO nanorod and microrod arrays on Si substrates by a wet chemical method,” Appl. Phys. Lett.89, 163128 (2006).
[4]Benjamin Weintraub, Yulin Deng and Zhong L. Wang, “Position-Controlled Seedless Growth of ZnO Nanorod Arrays on a Polymer Substrate via Wet Chemical Synthesis,” The Journal of Physical Chemistry C 111 (28), pp. 10162-10165 (2007).
[5]H. Kinoshita, K. Kurihara, Y. Ishii and Y. Torii, J. Vac. Scl. Tehnoi. B, 7 (6) (1989).
[6]Jr H. He, Ju H. Hsu, Chun W. Wang, Heh N. Lin, Lih J. Chen and Zhong L. Wang, “Pattern and Feature Designed Growth of ZnO Nanowire Arrays for Vertical Devices,” The Journal of Physical Chemistry B 110 (1), pp. 50-53 (2006).
[7]徐昭業, “奈米球微影術製造鎳鐵陣列之特性研究,” 碩士論文,國立中正大學物理研究所 (2003).
[8]蔡信行、孫光中,奈米科技導論,台北:新京文開發,p81,2004.
[9]Amit Kumar and George M. Whitesides, “Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ‘‘ink’’ followed by chemical etching,” Appl. Phys. Lett. 63, pp. 2002 (1993).
[10]Stephen Y. Chou, Peter R. Krauss and Preston J. Renstrom, “Imprint Lithography with 25-Nanometer Resolution,” Science 5, Vol. 272, No. 5258, pp. 85-87 (1996).
[11]Bailey, “Step and flash imprint lithography:A New Approach to High-Resolution Patterning,” Proceedings of the SPIE, Vol. 3676, pp.379-389 (1999).
[12]Bailey, “Step and flash imprint lithography:Defect analysis,” J. Vac. Sci. Technol., Vol.19, pp. 2086-2810 (2001).
[13]F. Jarai-Szabo, S. Astilean and Z. Neda, “Understanding Self-Assembled Nanosphere Patterns,” Chem. Phys. Lett. 408, pp. 241-246 (2005).
[14]N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura and K.Nagayama, “Mechanism of Formation of Two-Dimensional Crystals from Latex Particles on Substrates,” Langmuir 8, pp. 3183-3190 (1992).
[15]P. A. Kralchevsky, V. N. Paunov, I. B. Ivanov and K. Nagayama, “Capillary Meniscus Interactions between Colloidal Particles Attached to a Liquid-Fluid Interface,” J. Colloid Interface Sci. 151, pp. 79-94 (1992).
[16]P. A. Kralchevsky, V. N. Paunov, N. D. Denkov, I. B. Ivanov, K. Nagayama, “Energetical and Force Approaches to the Capillary Interactions between Particles Attached to a Liquid-Fluid Interface,” J. Colloid Interface Sci. 155, pp.420-437 (1993).
[17]P. A. Kralchevsky and K. Nagayama, “Capillary Forces between Colloidal Particles,” Langmuir 10, pp. 23-36 (1994).
[18]K. Nagayama, “Two-dimensional Self-Assembly of Colloids in Thin Liquid Films,” Colloids Surf. A 109, pp. 363-374 (1996).
[19]R. A. Hayes and B. J. Feenstra, “Video-speed electronic paper based on electrowetting,” Nature 425, pp. 383-385 (2003).
[20]C. B. Gorman, H. A. Biebuyck and G. M. Whitesides, “Control of the Shape of Liquid Lenses on a Modified Gold Surface using an Applied Electrical Potential Across a Self-Assembled Monolayer,” Langmuir 11, 2242-2246 (1995).
[21]B. H. W. Hendriks, S. Kuiper, M. A. J. Van As, C. A. Renders and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Optical Review 12, 255-259 (2005).
[22]Varioptic, http://www.varioptic.com/en/index.php.
[23]范士岡, “通用電操控微流體平台,” 奈米通訊(Nano Communication), 16卷, No.3, pp. 15-22 (2009).
[24]S. K. Fan, T. H. Hsieh and D. Y. Lin, “General digital microfluidic platform manipulating dielectric and conductive droplets by dielectrophoresis and electrowetting,” Lab Chip, Vol. 9, pp. 1236-1242 (2009).
[25]M. G. Pollack, P. Y. Paik, A. D. Shenderov, V. K. Paluma, F. S. Dietrich and R. B. Fair, “investigation of electrowetting-based microfluidic for real-time pcr application,” in miniaturized chemical and biochemical analysis system, Anonymous (2003).
[26]Y. Chang, G. Lee, F. Huang, Y. Chen and J. Lin, “Integrated polymerase chain reaction chips utilizing digital microfluidics,” Biomed. Microdevices 8, pp. 215-225 (2006).
[27]M. G. Lippmann, “Relations entre les phenomenes electrique etcapillaires,” Ann. Chim. Phys. 5, pp. 494-549 (1875).
[28]B. Berge, “Electrocapillarity and wetting of insulator films by water,” Comptes Rendus de l’Academie des Sciences Serie II, Vol. 317, pp. 157-163 (1993).
[29]H. Liu, S. Dharmatilleke, D. K. Maurya and A. A. O. Tay, “Dielectric materials for electrowetting-on-dielectric actuation,” Microsystem technologies-micro-and nanosystems-information storage and processing systems, Vol. 16, pp. 449-460 (2009).
[30]S. K. Cho, H. Moon and C. J. Kim, “Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital Microfluidic Circuits,” Journal of Microelectromechanical Systems, Vol. 12, NO. 1, pp. 70-80 (2003).
[31]H. Ren, V. Srinivasan and R. B. Fair, “Design and testing of an interpolating mixing architecture for electrowetting-based droplet-on-chip,” TRANSDUCERS, 12th International Conference on Solid-State Sensors, Actuators and Microsystems, Vol. 1, pp. 619-622 (2003).
[32]M. G. Pollack, R. B. Fair and A. D. Shenderov, “Electrowetting-based actuation of liquid droplets for microfluidic applications,” Appl. Phys. Lett., Vol. 77, No. 11, pp. 1725-1726, (2000).
[33]S. W. Walker, B. Shapiro and R. H. Nochetto, “Electrowetting with contact line pinning: Compu¬ tational modeling and comparisons with experiments,” Physics of Fluids, Vol. 21, (2009).
[34]J. Kao, M. Lin, Y. C. Hu, C. S. Yu and H. C. Hu, “Multifunctional Biochemical Biochip System,” NARL (2006).
[35]Gordon E. Moore, “Cramming more components onto integrated circuits,” Electronics, Vol. 38, No. 8, April 19 (1965).
[36]John C. Hulteen and Richard P. Van Duyne, “Nanosphere lithography : A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13(3) (1995).
[37]N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura and K. Nagayama, “Mechanism of Formation of Two-Dimensional Crystals from Latex Particles on Substrates,” Langmuir 8, pp. 3183-3190 (1992).
[38]R. Micheletto, H. Fukuda and M. Ohtsu, “A Simple Method for the Production of a Two-Dimensional, Ordered Array of Small Latex Particles,” Langmuir 11, pp. 3333-3336 (1995).
[39]D. Wang and H. Mohwald, “Rapid Fabrication of Binary Colloidal Crystals by Sstepwise Spin-Coating”, Adv. Mater. 16, pp. 244-247 (2004).
[40]J. Rybczynski, U. Ebels and M. Giersig, “Large-scale, 2D arrays of magnetic nanoparticles,” Colloids and Surfaces A : Physicochem. Eng. Aspects 219, pp. 1-6 (2003).
[41]A. Winkleman, B. D. Gates, L. S. McCarty and G. M. Whitesides, “Directed Self-Assembly of Spherical Particles on Patterned Electrodes by an Applied Electric Field,” Adv. Mater. 17, pp. 1507-1511 (2005).
[42]廖仁偉, “蛋白質原位合成生物晶片之設計與製作,” 碩士論文,國立中央大學光電研究所 (2008).
[43]鄭世偉, “ 實驗室晶片整合之設計與製作,” 碩士論文,國立中央大學光電研究所 (2009).
[44]R. Micheletto, H. Fukuda and M. Ohtsu, “A Simple Method for the Production of a Two-Dimensional, Ordered Array of Small Latex Particles,” Langmuir, 11 (9), pp. 3333-3336 (1995).
[45]W. C. Bigelow, D. L. Pickett and W. A. Zisman, “Oleophobic monolayers : I. Films adsorbed from solution in non-polar liquids,” Journal of Colloid Science 1, pp. 513, (1946).
[46]R. G. Nuzzo and D. L. Allara, “Adsorption of bifunctional organic disulfides on gold surfaces,” Journal of the American Chemical Society 105, pp. 4481 (1983).
[47]J. D. Green, M. T. McDermott and M. C. Porter, “Nanometer-Scale mapping of chemically distinct domains at well-defined organic interfaces using friction force microscopy,” Journal of Physical Chemistry, 99, pp. 10960-10965 (1995).
[48]A. Kumar and G. M. Whitesides, “Patterned Condensation Figures as Optical Diffraction Gratings,” Science 7, Vol. 263, No. 5143, pp. 60-62 (1994).
[49]S. Friebel, J. Aizenberg, S. Abad and P. Wiltzius, “Ultraviolet Lithography of Self-Assembled Monolayers for Submicron Patterned Deposition,” Appl. Phys. Lett. 77, pp. 2406 (2000).
[50]A. Ulman, “Thin Films: Self-Assembled Monolayers of Thiols,” Academic Press, San Diego, CA (1998).
[51]A. N. Shipway, E. Katz and I. Willner, “Nanoparticle Arrays on Surfaces for Electronic, Optical and Sensoric Applications”, Chemphyschem 1, pp. 18-52 (2000).
[52]Y. Xia, B. Gates, Y. Yin and Y. Lu, “Monodispersed Colloidal Spheres: Old Materials with New Applications”, Adv. Mater. 12, pp. 693-713 (2000).
[53]P. A. Kralchevsky and N. D. Denkov, “Capillary Forces and Structuring in Layers of Colloid Particles”, Curr. Opinion. Coll. Interf. Sci. 6, pp. 383-401 (2001) .
[54]J. Dutta and H. Hofmann, “Self-Organization of Colloidal Nanoparticles,” Encyclopedia of Nanosci. and Nanotech. X , pp. 1-23 (2003).