跳到主要內容

簡易檢索 / 詳目顯示

研究生: 許歆仁
Hsin-Jen Hsu
論文名稱: 火星克利斯平原與北方平原碉堡型坑洞的研究
A Study of the Martian Rampart Craters in Chryse Planitia and Northern Plains
指導教授: 葉永烜
Wing-Huen Ip
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 天文研究所
Graduate Institute of Astronomy
畢業學年度: 96
語文別: 英文
論文頁數: 67
中文關鍵詞: 撞擊坑行星科學火星碉堡型坑洞
外文關鍵詞: Impact crater, Planetary Science, Ramaprt Crater, Mars
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 碉堡形坑洞 (Rampart Craters) 是一種相當特殊的撞擊坑;目前只在火星以及少數太陽系的衛星表面被發現。這種撞擊坑主要位於火星北半球的中低緯度地區。這類坑洞有著類似台地的結構環繞在坑洞環邊,形成原因一般認為是因為撞擊後的噴發物中含有大量水分。這些坑洞的分布已經被當成是可能的火星地下水或地下冰層位置。另外,它們的形態可以提供關於火星北半球可能曾經有大量液態水時造成的侵蝕與沉積重要資訊。在這篇論文中我們在火星表面的Chryse Planitia選定88個這類坑洞;並在北緯65~80度的區域中選定54個。使用四個環繞火星探測船的影像資料,這些資料來自以下儀器:HRSC (裝設於Mars Express)、MOC (裝設於Mars Global Surveyor)、THEMIS (裝設於Mars Odyssey)、以及HiRISE (High裝設於Mars Reconnaissance Orbiter);以及地形測量資料來自MOLA (裝設於Mars Global Surveyor) 和 HRSC/DTM (裝設於Mars Express) 以進行此類坑洞的各項研究。我們發現在坑洞直徑在10公里到20公里的範圍內可以看到各種不同型態的坑洞。在坑洞型態、直徑和深度關係的分析上則顯示了各區域地質的差異性。並以各種坑洞高度剖面的資料了解了各種坑洞在結構上的差異。一些被冰層覆蓋的高緯度坑洞則顯示了含冰層可能存在於該區域下極淺處。


    Martian rampart craters are a special type of impact crater, which exist on Mars and some planetary satellites in the Solar System. They are located mostly in the mid- and low-latitude regions of the northern hemisphere of Mars. The formation of the plateau-like crater rims has been suggested to be caused by the mixing of the impact ejecta with water vapor during the impact explosion. Their distribution has therefore been used as indicators of potential sites of underground water or subsurface ice. In addition, their shapes and morphologies can provide important information about the erosion and sedimentary processes that occurred during the time when the northern hemisphere of Mars was probably partly covered by water. In this work, 88 craters in Chryse Planitia and 54 other craters located at latitudes between 65°and 80°N are examined using images obtained by instruments on-board various Mars-orbiting spacecraft including HRSC (Mars Express), MOC (Mars Orbiter Camera), THEMIS (Mars Odyssey) and HiRISE (Mars Reconnaissance Orbiter). Topographical data form MOLA (Mars Global Surveyor) and HRSC DTM measurements are used to characterize the physical properties. Here we discover that craters between 10 and 20 km in diameter have a diverse morphology. The relationship between morphology, diameter, and depth show us differences in the local geology. The different structures of different kinds of ramparts can be seen in cross-section. Some high latitude craters have ice caps inside the cavity, but the depth of the ice-rich layer may be very shallow.

    1 Introduction 1 1.1 General Properties of Mars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Astronomical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 The Atmosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.3 Surface Temperature and Thermal Inertias . . . . . . . . . . . . . . . . . . . .1 1.1.4 Surface Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.5 Age of the Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.6 Highlands and Plains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.7 Volcanoes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1.8 Tectonism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1.9 Poles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1.10 Rocks and Mineralogy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2 The Rampart Craters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 The Data Sources and Instruments 12 2.1 The Mars Orbiters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 The Instruments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3 The Morphology and Distribution of Craters 16 4 Morphology and Topology of the Rampart Craters 33 4.1 Morphology and Cross-Sections of Different Kinds of Ejecta. . . . . . . . . . 33 4.1.1 Single Layer Ejecta (SLE) Craters . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.1.2 Double Layer Ejecta (DLE) Craters . . . . . . . . . . . . . . . . . . . . . . . . 41 4.1.3 Multiple Layer Ejecta (MLE) Craters . . . . . . . . . . . . . . . . . . . . . . 49 4.2 The Relation of Diameters and Depths or Morphology . . . . . . . . . . . . . . . 57 5 Summary and Discussion 62 6 Future Work 64 Bibliography 65

    Albertz, J., et al., 2005, Photogrammetric Engineering & Remote Sensing, 71, 1153
    Allen, C.C., 1979, Icarus, 39, 111.
    Andrews-Hanna, J. C., Zuber, M. T., and Banerdt, W. B., 2008, Nature, 453, 1212
    Baloga, S. M., Fagents, S. A., and Mouginis-Mark, P. J., 2005, J. Geophys. Res., 110, E10001
    Barlow, N. G., et al., 2000, J. Geophys. Res., 105, 26733
    Boyce, J. M., Mouginis-Mark, P. J., and Garbeil, H., 2005, J. Geophys. Res., 110, E03008.
    Boyce, J. M., and Mouginis-Mark, P. J., 2006, J. Geophys. Res., 111, E10005
    Boyce, J. M., et al., 2008, Lunar and Planetary Science XXXIX., 1402
    Brown, A. J., et al., 2007, Lunar and Planetary Science XXXVIII, 2308
    Carr, M. H., et. al., 1976, Science, 193, 766
    Carr, M. H., 1996, Water on Mars, Oxford University Press.
    Christensen, P. R., et al, 2004, Space Science Reviews, 110, 85
    Demura, H., and Kurita, K., 1998, Earth Planets Space, 50, 423
    Forgot, François, Costard, François, and Lognonné, Philippe, 2008, Planet Mars Story of Another World, Springer-Praxis.
    Garvin, J. B., and Frawley, J. J., 1998, Geophys. Res. Letters, 25, 4405
    Garvin, J. B.,Sakimoto, S. E. H., Frawley, J. J., and Schnetzler, C., 2000, Icarus, 144, 329
    Gault, D. E., and Greeley, R., 1978, Icarus, 34, 486
    Head III, J. W., et. al., 1999, Science, 286, 2134
    Kargel, Jeffrey S., 2004, Mars : A Warmer Wetter Planet, Springer-Praxis
    Kiefer, W. S., 2008, 2008, Nature, 453, 1191
    Komatsu, G.., et al., 2007, J. Geophys. Res., 112, E06005
    Kossacki, K. J., Markiewicz, W. J., Portyankina, G., Neukum, G. and HRSC team, 2006, Fourth Mars Polar Science Conference, 8016.
    Kuzmin, R. O., et al., 1988, Lunar and Planetary Science XIX., 655
    Lee, C. B., 2008, Lunar and Planetary Science XXXIX, 1609
    Marinova, M. M., Aharonson, O, and Asphaug, E., 2008, Nature, 453, 1216
    McEwen, A. S., et al, 2007, J. Geophys. Res., 112, E05S02
    Mouginis-Mark, P. J., 1978, Morphology of Martian rampart craters, Nature, 272, 691
    Neukum, G.., Jaumann, R., and the HRSC Co-Investigator and Experiment Team 2004, ESASP, 1240, 17
    Xie, H., et al., 2008, Planetary and Space Science, 56, 887
    ESA Science & Technology: Mars Express http://sci.esa.int/science-e/www/area/index.cfm?fareaid=9
    Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) http://www.msss.com/mgs/moc/index.htm
    Mars Orbiter Laser Altimeter (MOLA) Science Investigation http://ssed.gsfc.nasa.gov/tharsis/mola.html
    Mars Odyssey Mission THEMIS http://themis.asu.edu/
    Mars Reconnaissance Orbiter : Home http://mars.jpl.nasa.gov/mro/

    QR CODE
    :::