跳到主要內容

簡易檢索 / 詳目顯示

研究生: 洪琦婷
Chi-Ting Hung
論文名稱: 異質接面雙極性功率電晶體分析及VBIC模型建立
The Analysis of Scalable InGaP/GaAs Power HBTs and Establishment of VBIC Model
指導教授: 詹益仁
Yi-Jen Chan
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 94
語文別: 中文
論文頁數: 102
中文關鍵詞: 熱影像圖電流崩塌熱效應異質接面功率元件VBIC模型異質接面雙極性電晶體
外文關鍵詞: current collapse thermal IR(IR tthermograph), thermal effect, VBIC model, power HBT, power device, InGaP/GaAs HBT, HBT
相關次數: 點閱:22下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文首先介紹異質接面雙極性電晶體(射極面積1×240?m2)之VBIC模型之基本架構與參數意義,以及各種參數之萃取方法,參數取得之後,VBIC模型則建立完成,接下來必須驗證大訊號功率特性及線性度,以確定VBIC模型的準確性。
    在單一電晶體VBIC模型建立完成之後,我們用此模型套用於大面積的功率元件上,利用ADS模擬軟體,在電晶體並聯後計算出模擬與量測值之誤差率,並說明如何利用電晶體外部修正,補足因並聯而產生的寄生效應,使得誤差率降低。
    接著論文中會分析,從單一電晶體(射極面積1×240?m2)到八顆電晶體並聯(射極面積8×240?m2),其在常溫到高溫所量測到的直流、交流、功率與線性度等特性,並且說明電晶體並聯與溫度效應的影響。
    最後為功率元件的熱效應分析,我們用兩種量測方法作比較,第一種為I-V特性曲線(CW mode),當電晶體在高功率操作時,熱效應造成的集極電流下降會相當顯著,由不同溫度下之集極電流量測值可計算出熱電阻值。第二種為藉由熱影像圖(IR thermograph)方式,經由金屬溫度校正(calibration)後得到元件表面的最高溫度,再經由公式計算出電阻值。


    This thesis focuses on the establishment of VBIC model and the characteristics analysis, including the thermal influence, of power HBTs. It contains three parts: (1) the simplification and the optimization for the elementary cell HBT model, which is applied to large-size power HBTs, (2) investigating the characteristics with thermal effect, (3) obtaining thermal resistance and junction temperature by means of two measured methods.
    After the simplification and the optimization procedure of the VBIC model, the characteristics of HBT for elementary cell could be derived efficiently and exactly. However, when the model was applied to the HBTs which operate in parallel, the model would not perform correctly. Therefore, the developed model is necessary to be used to improve the accuracy. Adding the lumped equivalent circuit into the elementary cell, the proposed approach could reduce error ratio when applying to the large-size device.
    Furthermore the power HBT’s characteristics, including the thermal effect, is also investigated. Since such HBTs are operated at high power levels, the device temperature will significantly rise, which results in the self-heating effect and degrade the device performance and reliability. Thermal resistance is the key parameter of thermal effect. Two different methods would be applied to measure the thermal resistance. Firstly, a CW mode method to accurately obtain the thermal resistance of HBT’s is presented. The key advantage of the method is its simplicity, because it requires only the measurement of the device DC output characteristics at two different temperatures. In addition, the other method is the measurement of IR thermograph, which could derive the highest temperature of device surface, following to obtain the thermal resistance. The thermal resistance obtained with two methods would be in comparison finally.

    第一章 導論 1 第二章 單一異質接面雙極性功率電晶體 VBIC模型建立 2.1 功率元件簡介 4 2.2 VBIC模型之介紹 5 2.3 HBT 電流特性 9 2.4 順向與逆向Gummel-plot 參數之萃取 11 2.5 直流特性與電流增益量測及直流參數萃 14 2.6 類飽和效應萃取 16 2.7 基極寬度調變效應 17 2.8 寄生電阻之量測及萃取 17 2.8.1 射極與集極寄生電阻 18 2.8.2 基極寄生電阻 19 2.9 接面電容分析 21 2.10 傳輸時間參數分析 25 2.11 S參數分析 27 2.12 功率特性量測與模擬驗證 29 2.12.1 負載-拉移原理 29 2.12.2 輸入功率與輸出功率關係 29 2.12.3 負載-拉移量測與模擬 30 2.13 線性度分析驗證 32 2.13.1 三階截斷點IP3 32 2.13.2 鄰近通道功率比例 33 2.14 單一HBT模型應用於功率元件 37 2.14.1 誤差分析與模擬結果 37 2.14.2 電晶體外部元件以改善誤差率 40 2.15 結果與討論 45 第三章 功率元件特性分析及溫度效應 3.1 簡介 46 3.2 直流特性 46 3.3 功率元件交流特性 48 3.3.1 常溫下之S參數 48 3.3.2 S參數之溫度效應 50 3.4 頻率響應及傳輸時間 3.4.1 截止頻率fT及最大振盪頻率fMAX 54 3.4.2 傳輸時間 56 3.4.3 溫度效應 58 3.5 功率特性 60 3.5.1 功率原理 60 3.5.2 量測與結果分析 61 3.5.3 高溫下功率特性 64 3.6 非線性分析 65 3.6.1 IMD原理與量測結果 66 3.6.2 ACPR原理與量測結果 68 3.7 結論 73 第四章 功率元件熱效應分析 4.1 簡介 73 4.2 直流特性曲線方式之熱效應分析 73 4.3 熱影像圖之熱效應分析 76 4.4 結果與討論 80 第五章 結論 82 參考文獻 84

    [1] Xiaochong Cao J. McMachen, K. Stiles, P. Layman, Jiou, Adelmo Ortiz-Conde,and S. Moinian.” Comparison of the New VBIC and Conventional Gummel-Poon Bipolar Transistor Models,” IEEE Transactions on Electron Devices ,Vol. 47, No.2, PP427-433,February 2000.
    [2] Colin C. McAndrew, Jerold A. Seitchik, Derek F. Bowers, Mark Dunn, Mark Foisy, Ian Getreu, Marc McSwain, Shahriar Moinian, James Parker, David J. Roulston, Michael Schroter, Pual van Wijnen, and Lawrence F. Wagner,” VBIC95, The Vertical Bipolar Inter-Company Model,” IEEE J. Solid-State Circuits, Vol. 31, No. 10,PP1476-1482, October 1996.
    [3] H. K. Gummel and H. C. Poon, “ An integrated charge control model of bipolar transistors,” Bell Syst. Tech. J., Vol. 49, PP827-852, May 1970.
    [4] Mohammad Sotoodeh, Lucia Sozzi, Alessandro Vinay, A.H. Khalid, Zhirun Hu,Ali A. Rezazadeh,and Roberto Menozzi,” Stepping Toward Standard Methods of Small-Signal Parameter Extraction for HBT’s,” IEEE Transactions on Electron Devices, Vol.47, No.6, PP1139-1151, June 2000.
    [5] W. Liu, “ Handbook of Ⅲ-Ⅴ Heterojunction Bipolar Transistor,” Willy, New York, 1986
    [6] X. Cao, J. McMacken, K. Stiles, P. Layman, J. J. Liou, A. Sun,and S. Moinian,” Parameter Extraction and Optimal for New Industry Standard VBIC Model,” International Conference on Advanced Semiconductor Devices and Microsystems, Smolenice Castle, Slovakia, 5-7, PP107-115 October 1998.
    [7] “ High-Frequency Model Tutorial,” ICCAP manual, Vol.1.
    [8] M. Kahn, S. Blayac, M. Riet, Ph. Berdaguer, V. Dhalliuin, F. Alexandre,and J. Godin,” Measurement of Base and Collector Transit Times in Thin-Base InGaAs/InP HBT,” IEEE Electron Devices Lett. ,” Vol. 24, No. 7, PP430-432, July 2003.
    [9] C. T. Kirk, Jr., “ A Theory of Transistor Cutoff Frequency(fT) Falloff at High Current Densities,” IRE Transactions Electron Devices, 19, PP.164-174 1962.
    [10] Shey-Shi Lu, Chinchun Meng, To-Wei Chen, and Hsiao-Chin Chen, “The Origin of the Kink Phenomenon of Transistor Scattering Parameter S22,” IEEE Transactions on Microwave Theory and Technique, Vol.49, No.2, February 2001
    [11] Rached Hajji , ;“A Systematic Layout-Based Method for the Modeling of High-Power HBT’ s Using the Scaling Approach ,”IEEE Transactions on Electron Devices , Vol.42, No.3, March 1995
    [12] S.Ohara, H. Yamada, T. Iwai, Y. Yamaguchi, K. Imanishi and K. Joshin , ;“InGaP/GaAs Power HBTs with a Low Bias Voltage,”IEDM 95 -791,1995
    [13] William Liu , ;“Thermal Management To Avoid The Collapse Of Current Gain in Power Heterojunction Bipolar Transistors,”IEEE GaAs IC Symposium 1995
    [14] J. Laskar, A. W. Hanson, B. T. Cunningham, James Kolodzey , ;“Effect of Reduced Temperature on the fT of AlGaAs /GaAs Heterojunction Bipolar
    Transistors,”IEEE Electron Devices Lett. Vol.12, No.6, June 1991
    [15] David A. Ahmari, Gopal Raghavan, Quesnell J. Hartmann, Michael L.
    Hattendorf, Milton Feng, and Gregory E. Stillman, “ Temperature Dependence of InGaP/GaAs Heterojunciton Bipolar Transistor DC and Small-Signal Behavior,” IEEE Trans. Electron Devices, Vol. 46, No. 4, PP.634-640, April 1999.
    [16] Ce-Jun Wei, James C. M. Hwang, Wu-Jing Ho,and J. Aiden Higgins,
    “ Large-Signal Modeling of Self-Heating, Collector Transit-Time, and RF-Breakdown Effects in Power HBT’s,” IEEE Trans. Microwave Theory Tech, Vol. 44, No. 12, PP.2641-2647, December 1996.
    [17] G. Jackson, D. Teeter, D. Bradford, and M. Cobb , “A Scalable MMIC-Compatible Power HBT,” 1995 IEEE MTT-S Digest.
    [18] Dale E. Dawson, Aditya K. Gupta,and Mike L. Salib, “ CW Measurement of HBT Thermal Resistance,” IEEE Transactions on Electron Devices, Vol. 39. No.10.
    PP.2235-2239, October 1992.
    [19] Steve P. Marsh, “Direct extraction technique to derive the junction temperature of HBT''s under high self-heating bias conditions,” IEEE Transactions on Electron Devices, Vol. 47,No. 2, PP.288-291, February 2000.
    [20]N. Bovolon, P. Baureis, J.-E. M¨uller, P. Zwicknagl, R. Schultheis, and E. Zanoni, ;“A Simple Method for The Thermal Resistance Measurement of AlGaAs/GaAs Heterojunction Bipolar Transistors,”IEEE Transactions on Electron Devices, Vol.45, No.8, August 1998
    [21] Dawson, D.E.; Gupta, A.K.; Salib, M.L.;“CW measurement of
    HBT thermal resistance,”IEEE Transactions on Electron Devices,
    Volume: 39 Issue: 10, Oct 1992
    [22] T. Oka, K. Fujita, K. Shirakawa, N. Takahashi, Y. Liu, M. Yamashita,
    H. Kawamura, M. Hasegawa, H. Koh, K. Kagoshima, H. Kijima, and
    K. Sakuno.;“High-performance InGaP power HBT technologies for
    wireless applications,”IEEE Transactions on Electron Devices,2004
    [23] Takaki Niwa, ;“A Composite-Collector InGaP/ GaAs HBT with High Ruggedness for GSM Power Amplifiers ,” IEEE Transactions on Electron Devices,2002
    [24] Matthias Rudolph, ; “Scalable GaInP/GaAs HBT Large-Signal Model ,” IEEE Transactions on Microwave Theory and Techniques , Volume: 48 ,No: 12 , Dec 2000
    [25] Rached Hajji,“ Small-Signal Distributed Model for GaAs HBT’s and S-Parameter Prediction at Millimeter-Wave Frequencies ,” IEEE Transactions on Electron Devices, Volume: 47, No: 2, May 1997
    [26] T. Hirayama, Y. Swuki, N. Matsuno, and H. Hida, “Effect of gain expansion on power HBTs,” 30th European Microwave Conf, Oct. 2000, Vol. 111, pp. 96-99.
    [27] 蘇碩彬,“異質接面雙極性電晶體之大訊號模型建立及其在功
    率放大器之應用,”碩士論文,國立中央大學,2002
    [28] 王雅萱,“異質接面雙極性電晶體VBIC模型建立及其在射頻電路之應用”,碩士論文,國立中央大學,2003
    [29] 蔡旻倪,“異質接面雙極性電晶體VBIC模型建立及其功率特性模擬”,碩士論文,國立中央大學,2003

    QR CODE
    :::