跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳維佑
Wei-You Chen
論文名稱: 含有長期追蹤共變量之加乘法風險迴歸模型
Additive­-Multiplicative Hazards regression Models with Longitudinal Covariates
指導教授: 曾議寬
Yi-Kuan Tseng
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計研究所
Graduate Institute of Statistics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 89
中文關鍵詞: 加乘法風險模型EM 演算法聯合模型最大概似估計
外文關鍵詞: additive­multiplicative hazards model, EM algorithm, joint model, MLE
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 許多存活分析研究中,Cox比例風險模型(記做Cox模型)時常被廣泛討論以及應用。然而,當使用Cox模型時,所有共變量均需滿足比例風險此條件,一旦有任一共變量違背,Cox模型即無法使用。在此種情況下加速失效時間模型(記做AFT模型)可以做為替代模型,而Cox模型和AFT模型兩者皆為乘法模型。在實際情況有一些研究資料,其共變量以加法效應描述較合適,例如Aalen加法模型。為了處理較複雜的資料,本研究建議一個較廣義的Aalen-Cox加乘法模型,將無法滿足Cox比例風險假設的共變量放置於Aalen-Cox模型中加法部分。此外我們可以進一步用AFT模型取代Cox模型,Aalen-AFT的模型也能被建立。為了處理事件時間結合長期追蹤共變量,我們使用聯合模型方法,結合EM-演算法、馬可夫鏈蒙地卡羅法以及牛頓迭代法做參數估計,以模擬研究來評估本論文所提出之估計方法,最後用愛滋病資料來驗證本論文新方法之實用性。


    In many survival studies, Cox PH model is widely discussed and applied in lots of situations. However, when we use Cox model, all the covariates have to satisfy proportional hazard assumption. Once any one of covariates violates the assumption, Cox model cannot be used. In such case, The AFT model may be an alternative model. Both Cox model and AFT model are multiplicative model. There are some research data in practice that are more appropriate to describe the covariate effects as additive, such as the Aalen additive model. To handle complicated data, we propose a more general addictive-multiplicative model, Aalen-Cox model, by putting those covariates which violate proportional hazard assumption into the addictive part in the Aalen-Cox model. In addition, we may further replace the Cox model by AFT model, thus the so-called Aalen-AFT model is constructed. In particular, to handle event time data with longitudinal covariates, we uses the joint model method, incorporating the EM-algorithm、MCMC and Newton-Raphson to do parameter estimation. The estimation method is evaluated via simulation. The Taiwan AIDS cohort data is used to verify the practicability of the new method.

    目錄 摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vi 表目錄 vii 1 緒論 1 1.1 加法模型與乘法模型 1 1.2 加乘法模型 3 1.3 聯合模型 5 1.4 概述 7 2 統計方法 8 2.1 符號 8 2.2 聯合模型 10 2.2.1 共變量與存活過程聯合建模 10 2.2.2 參數估計 (Aalen­-Cox) 15 2.2.3 參數估計 (Aalen­-AFT) 18 3 模擬研究 24 3.1 模擬方法 24 3.2 資料生成 25 3.3 模擬參數估計結果 26 3.4 模擬測量誤差影響 27 4 資料分析 32 4.1 愛滋病資料介紹 32 4.1.1 簡介 32 4.1.2 影響性 33 4.1.3 起源 33 4.1.4 治療 33 4.2 平賭計數過程做模型適合度檢定 35 4.3 資料參數估計結果 36 5 結論與討論 44 參考文獻 45 附錄 A : Aalen­-Cox 第一、二部分參數估計 47 附錄 B : Aalen-­Cox 第三部分參數估計 50 附錄 C : Aalen-­AFT 第三部分參數估計 57 附錄 D : Aalen-­Cox 模擬共變量矩陣估計 63 附錄 E : Aalen­-Cox 模擬 R code 65

    Aalen,O.O. (1980). A model for non­parametric regression analysis of counting process. Lecture Notes in Statistics­2 : Mathematical Statictics and Probability Theory, 1­25

    Cox, D.R. (1972) Regression models and life­tables. Journal of the Royal Statistics Society series B 34, 187­220

    Lin, D.Y. (2007). On the Breslow estimator. Lifetime Data Analysis 13 ,471–480.

    Lin, D.Y. and Ying, Z. (1995). Semiparameter analysis of general addictivemultiplicative hazard models for counting process. The Annal of Statistic23 ,1712­1734.

    Martinussen, T. and Scheike, T.H. (2002). A flexible addictive multiplicative hazard model. Biometrika 89, 283­298.

    Martinussen, T. and Scheike, T.H. (2006). Dynamic Regression Models for Survival Data, New York: Springer.

    McKeague, I.W. and Sasieni, P.D. (1994). A partly parametric addictive riskmodel. Biometrika 81, 501­14.

    Murphy, S.A. and Sen, P.K. (1991). Time­dependent coefficients in a Cox type regression model. Stochastic Process and their Applications 39,
    153­180.

    Scheike, T.H. and Zhang, M.J (2002). An Addictive­Multiplicative AalenCox Regression Model. Board of the Foundation of the Scandinavian
    Journal of Statistic 29, 75­88.

    Therneau, T.M. and Grambsh, P.M. (2000). Extending the Cox Model, New York: Springer.

    Tseng, Y.K., Hsieh, F. and Wang, J.L. (2005). Joint modeling of accelerated failure time and longitudinal data. Biometrika 92, 587­603.

    Tseng, Y.K., Su, Y.R. Mao.M and Wang, J.L. (2015). An extend hazard model with longitudinal covariates. Biometrika 102 ,135­150.

    Wulfsohn, M.S. and Tsiatis, A.A. (1997) A joint model for survival and longitudinal data measured with error. Biometrics 53, 330­339.

    徐永東 (2016)。加乘法風險模型結合長期追蹤資料之聯合模型。國立中央大學統計研究所碩士論文。

    林家聿 (2016)。台灣愛滋病實例研究 − 以聯合模型探討愛滋病患存活時間與相關生物指標之關係。國立中央大學統計研究所碩士論文。

    QR CODE
    :::