跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張子威
Tzu-Wei Chang
論文名稱: PDMS與金屬線雙層結構熱致動器之設計與製備
Design and fabrication of PDMS/metal wire bimorph thermal actuators
指導教授: 洪銘聰
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 104
中文關鍵詞: 熱致動器
外文關鍵詞: bimorph
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微致動器為微機電系統中驅動力的來源,一般區分為熱電式致動器、壓電式致動器、靜電式致動器、電磁式致動器等四種。其中熱電式致動器利用加熱介質(如液體或空氣),使介質體積變化而產生驅動力,而本實驗使用直徑120μm銅線製作出加熱器並與高分子材料(PDMS)結合製作成Bimorph結構熱致動器,此結構將利用其不同的熱膨脹係數,藉由輸入電壓電流使兩材料產生不同之體積變化,導致熱膨脹係數大端會往熱膨脹係數小端彎曲,並量測其形變量及彎曲角度,進而評估此類微致動器在應用上的可行性。
    本文製程首先利用Bimorph形變量公式做分析,設計出微小的熱致動器並能夠在窄小區域內產生致動效果以達到大位移量、低輸出功率之目的,過程中分析數種低楊氏係數金屬材料之優缺點,得出適當之材料與能夠產生大出平面位移量之材料尺寸,並做一系列之實驗以達控制溫度與分析出能適當控制輸入功率所影響PDMS厚度,然後做出加熱器模具,並將PDMS與銅線加熱器結合製成雙層結構懸臂樑熱致動器,製作出之熱致動器經量測能夠控制其形變量及彎取角度,並與理論分析結果做比較。
    結果顯示PDMS厚度越大則形變量及彎曲角度均增加,理論公式分析在PDMS厚度631μm與加熱溫度150℃可產生形變量(1.79mm),而溫度增加將導致形變量減少,而實驗結果PDMS厚度631mm之形變量為1.438mm,
    與理論值差距0.35mm,推測為加熱器固化PDMS不均勻與實驗誤差所致,實驗最終將溫度調升至160℃而加熱器將燒毀,故推測此組致動器之加熱極限值於此,未來將調整製程以減少實驗誤差,並提高形變量。


    Microactuators are the source of driving force in MEMS, and are generally classified into four types: thermoelectric actuators, piezoelectric actuators, electrostatic actuators, and electromagnetic actuators. The thermoelectric actuator uses a heating medium (such as liquid or air) to change the volume of the medium to generate a driving force. In this experiment, a heater with a diameter of 120 μm is used to fabricate a heater and combined with a polymer material (PDMS) to form a Bimorph thermal actuators structure, which use different coefficient of thermal expansion to cause different volume changes of the two materials by inputting voltage and current, causing the large end of the coefficient of thermal expansion to bend toward the small end of the coefficient of thermal expansion, and measuring the deformation and bending Angle, and then evaluate the feasibility of such microactuators in application.
    The process of this paper firstly uses the Bimorph-shaped variable formula to analyze, designing a tiny thermal actuator and capable of generating an actuation effect in a narrow area to achieve large displacement and low output power. Several low Young's modulus of material are analyzed in the process.The appropriate material and the size of the material capable of generating large plane displacement, and a series of experiments to control the temperature and analyze the thickness of the PDMS that can properly control the input power, and then make The heater mold is combined with PDMS and copper wire heater to form a bimorph cantilever beam thermal actuator. The thermal actuator can be measured to control its deformation and bending angle, then compare with theoretical analysis results .
    The results show that the larger the thickness of PDMS, that the deformation and the bending angle increase. The theoretical formula analysis can produce a deformation (1.79mm) at PDMS thickness of 631μm and a heating temperature of 150°C, while the temperature increase will lead to a decrease in the deformation, and the experimental result shows that the deformation of the PDMS thickness of 631 mm is 1.438 mm, which is 0.35 mm from the theoretical value. The reason is speculated that the heater curing PDMS is uneven and the experimental error is caused.
    The experiment finally raises the temperature to 160 ° C and the heater will burn out. Therefore, it is estimated that the heating limit of this group of actuators is here, and the process will be adjusted in the future to reduce the experimental error and increase the shape variable.

    第一章、緒論 1 1-1 研究背景 1 1-2 文獻回顧 3 1-3 研究動機與目的 8 1-4 論文架構 8 第二章、理論基礎 10 2-1 微致動器致動原理 10 2-1-1 致動器的種類 10 2-1-2 致動器微小化之特性 16 2-2 雙層結構熱致動原理 17 2-3 聚二甲基矽氧烷 (Polydimethylsilocane ,PDMS) 材料性質 20 第三章、研究方法 22 3-1研究架構 22 3-2不同材料之分析及選用 24 3-3形變量分析 24 3-4微加熱器溫度控制 27 3-4-1 熱顯像儀量測比較法 27 3-4-2 電阻溫度係數(TCR)量測 29 3-5微加熱器設計 30 3-6 PDMS厚度分析 32 3-6-1 Hot plate 測試PDMS固化厚度 32 3-6-2 凹槽模具加熱測試PDMS厚度 33 3-7致動器設計與製備 34 第四章、結果與討論 36 4-1低楊氏係數材料比較分析結果 36 4-2型變量分析結果 38 4-3微加熱器溫度控制結果 50 4-3-1熱顯像儀量測比較法 50 4-3-2電阻溫度係數(TCR)量測 58 4-4 PDMS厚度分析結果 60 4-4-1 Hot plate 測試PDMS固化分析結果 60 4-4-2 銅線與PDMS固化分析結果 61 4-5 致動器型變量量測結果 71 第五章、結論與未來工作 79 參考文獻 80

    [1]  Microsensors, Muller, R.S., Howe, R.T., Senturia, S.D., Smith, R.L., and
    White, R.M. [Eds.], IEEE Press, New York, NY, 1991.
    [2] J. H. Tong, C. A. Simmons, and Y. Sun, "Precision patterning of PDMS
    membranes and applications," Journal of Micromechanics and
    Microengineering, vol. 18, no. 3, p. 5, 2008,.
    [3] J. Park, H. S. Kim, and A. Han, "Micropatterning of poly(dimethylsiloxane)
    using a photoresist lift-off technique for selective electrical insulation of
    microelectrode arrays," Journal of Micromechanics and Microengineering,
    vol. 19, no. 6, 2009.
    [4] W. Riethmuller and W. Benecke, "Thermally excited silicon microactuators," IEEE Transactions on Electron Devices, vol. 35, no. 6, pp. 758-763, 1988.
    [5] Rachita Shettar and Dr B G Sheeparamatti,” Modeling and Analysis of Thermal Bimorph Using COMSOL”, COMSOL Conference ,Bangalore, 2013.
    [6] Tjitte-Jelte Peters and Marcel Tichem ,‘’Electrothermal Actuators for SiO2 Photonic MEMS”, Micromachines 2016, 7.
    [7] Larry Hornbeck, ” Into the 3D vision series (5): and difficult and forward-looking "MEMS micromirrors”
    [8] Tactile sensor array using microcantilever with nickel–chromium alloy thin film of low temperature coefficient of resistance and its application to slippage detection. Volume 186, October 2012, Pages 32-37.
    [9] 網路資料︰知識力:靜電微致動器(Electrostatic micro actuator)。2017年1月19日,取自https://www.ansforce.com/post/S1-p461。
    [10] 網路資料︰知識力:壓力微感測器(Pressure micro sensor)。2016年9月25日,取自https://www.st.com/content/st_com/en.html。
    [11] J. Friend, A. Umeshima, T. Ishii, K. Nakamura, and S. Ueha, “A piezoelectric linear actuator formed from a multitude of bimorphs,” Sensors and Actuators, vol. 109, pp. 242-251, 2004.
    [12] 陳立岡、洪紹剛,「混合式電磁壓電致動器之設計與特性研究」,國立交通大學,碩士論文,民國100年6月。
    [13] G. Lin, C. J. Kim, S. Konishi, and H. Fujita, "Design, fabrication, and testing of a C-shape actuator," in Proceedings of the 1995 8th International Conference on Solid-State Sensors and Actuators and Eurosensors IX. Part 1 (of 2). IEEE, vol. 2, pp. 416-419, 1995.
    [14] H. Tada et al., "Thermal expansion coefficient of polycrystalline silicon and silicon dioxide thin films at high temperatures," Journal of Applied Physics, vol. 87, no. 9, pp. 4189-4193, 2000.
    [15] G. Lin, C. J. Kim, S. Konishi, and H. Fujita, "Design, fabrication, and testing of a C-shape actuator," in Proceedings of the 1995 8th International Conference on Solid-State Sensors and Actuators and Eurosensors IX. Part 1 (of 2). IEEE, vol. 2, pp. 416-419, 1995.
    [16] J. Tsaur, Z. Lulu, R. Maeda, and S. Matsumoto, "2D micro scanner actuated by sol-gel derived double layered PZT," in Technical Digest. MEMS 2002 IEEE International Conference. Fifteenth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.02CH37266), pp. 548-551, 2002.
    [17] Q. A. Huang and N. K. S. Lees, "Analysis and design of polysilicon thermal flexure actuator," Journal of Micromechanics and Microengineering, vol. 9, no. 1, pp. 64-70, 1999.
    [18] N. Chronis and L. P. Lee, "Electrothermally Activated SU-8 Microgripper for Single Cell Manipulation in Solution," Journal of Microelectromechanical Systems, vol. 14, no. 4, pp. 857-863, 2005.
    [19] K. R. Williams, K. Gupta, and M. Wasilik, "Etch rates for micromachining processing-Part II," Journal of Microelectromechanical Systems, vol. 12, no. 6, pp. 761-778, 2003.
    [20] H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, " Anisotropic etching of crystalline silicon in alkaline-solutions .1 orientation dependence and behavior of passivation layers," Journal of the Electrochemical Society, vol. 137, no. 11, pp. 3612-3626, 1990.

    QR CODE
    :::