跳到主要內容

簡易檢索 / 詳目顯示

研究生: 唐蕙苓
Huei-Lin Tang
論文名稱: 酵母菌轉譯起始機制的研究
Elucidating a novel translation initiation mechanism for a eukaryotic gene
指導教授: 王健家
Chien-Chia Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 生醫理工學院 - 生命科學系
Department of Life Science
畢業學年度: 90
語文別: 中文
論文頁數: 51
中文關鍵詞: non-AUG 轉譯起始密碼
外文關鍵詞: alternative transcription and translation, leaky scanning, non-AUG initiator
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    目前已知在原核及高等真核細胞中,少數的基因可以使用 non-ATG作為轉譯的起始密碼,但在低等真核細胞如酵母菌Saccharomyces cerevisiae卻從未發現過。我們的實驗結果顯示酵母菌只有一個alanyl-tRNA synthetase (AlaRS)的基因 (ALA1),這個基因可以同時轉譯出細胞質及粒腺體所需的AlaRS。然而在這個基因的5’端卻只有一個ATG起始密碼(即ATG1),藉由5’ RACE的方法,我們發現ALA1可以轉錄出三條長短不同的訊息RNA,其5’端分別座落在-143,-105和-54核苷酸上。點突變的結果顯示,ALA1以ATG1 為起始密碼轉譯出細胞質的AlaRS,卻以上游的二個non-AUG (即ACG-25和ACG-24)為起始密碼轉譯出較大的粒腺體AlaRS。弁鄐W這兩個ACG都可以用來作為轉譯起始密碼,但是以ACG-25為較主要的起始密碼。用西方轉漬法來測定其蛋白質的表現,也得到了一致性的結果。而這樣的結果也首次證明了在正常生理條件下酵母菌可以使用non-AUG作為轉譯起始密碼,且這項發現不但銜接了由原核生物到高等真核生物在non-AUG使用上的斷層,也讓我們對酵母菌基因表現的調控有了更深一層的認


    Abstract
    Initiation of protein translation at non-ATG codons has been shown to occur naturally, although rarely in prokaryotes and high eukaryotes, and never in yeast. In this thesis, we provide strong evidence that a non-ATG codon is used as the alternative translational start site of the yeast gene ALA1, which is the only gene in Saccharomyces cerevisiae coding for alanyl-tRNA synthetase. An in vivo functional assay shows that ALA1 is a bifunctional gene that provides both the cytoplasmic and mitochondrial functions. However, unlike most other bifunnctional genes, which contain two alternative in-frame ATG initiators, there is only one ATG codon, designated ATG1, close to the 5’-end of the ALA1open reading frame. Transcriptional mapping reveals the existence of three overlapping transcripts for ALA1, with 5’ ends at positions –143, -105, -54, respectively, relative to the “A” nucleotide of ATG. Site-specific mutagenesis shows that the cytoplasmic and mitochondrial functions of ALA1 are provided by two distinct protein products: a cytoplasmic form initiated at ATG1 and a longer mitochondrial form initiated at two in-frame non-ATG codons, ACG-25 and ACG-24. These two ACG codons function redundantly in initiation of translation. Either one can be functional in the absence of the other; however, the first ACG codon appears to play a predominant role in protein synthesis. Western blot analysis further confirms the initiator function of these two codons. This appears to be the first example in which a non-ATG codon is used physiologically as a transitional initiator in yeast.

    目 錄 目錄……………………………………………………………………………. I 圖、表目錄………………………………………………………………….. III 縮寫檢索表………………………………………………………………….. IV 中文摘要……………………………………………………………………… 1 英文摘要……………………………………………………………………… 2 第一章 緒論 I. Aminoacyl-tRNA synthetase (aaRS)的簡介…………………………. 4 1. aaRS的生化function.................................4 2. aaRS的分類……………………………………………………… 5 II. 原核與真核細胞中aminoacyl-tRNA synthetase在轉譯方式 上的差異……………………………………………………………… 5 III. 酵母菌中aaRS轉譯方式的差異…………………………………... 6 IV. 轉譯起始密碼的選擇………………………………………………... 7 1.絕大多數基因使用ATG作為轉譯起始密碼,少數則使用 non-ATG作為轉譯起始密碼……………………………………... 7 2.酵母菌中alanyl-tRNA synthetase的特性……………………….. 8 V. 研究目的………………………………………………………………9 第二章 材料與方法 一、使用之菌株、載體及培養基……………………………………… 10 二、製備少量質體DNA……………………………………………….. 11 三、限制酵素切割質體DNA………………………………………….. 12 四、鹼性去磷酸酵素(BAP)處理載體…………………………………. 12 五、接合反應 (ligation)……………………………………………….. 13 六、大腸桿菌之形質轉換(Transformation)………………K……….. 14 七、酵母菌之形質轉換(Transformation)…………………………….. 15 八、5’ RACE (rapid amplification of cDNA ends)…………………... 16 九、Site-Direct Mutagenesis…………………………………………... 18 十、互補試驗(Complementation )……………………………………. 19 十一、蛋白質製備(Protein preparation)……………………………... 20 十二、SDS-PAGE之蛋白質分子量分析……………………………... 21 十三、西方點漬法(Western blotting)…………………………………. 22 十四、蛋白質濃度的定量 (Bradford, 1976)…………………………... 24 第三章 結果 I. 一個ALA1基因轉錄多條訊息RNA………………………………. 25 II. 一個ALA1基因轉譯二個蛋白質…………………………………. 26 III. 粒腺體AlaRS使用non-AUG當轉譯起始密碼………………... 27 IV. 用西方吸漬法證明粒腺體AlaRS使用non-AUG當轉譯起 始密碼…………………………………………………………….. 29 第四章 討論……………………………………………………………….. 30 第五章 參考文獻………………………………………………………….. 32 圖表………………………………………………………………………….. 36 附錄………………………………………………………………………….. 49 圖、表目錄 圖1、Aminoacylation……………………………………………………….. 36 圖2、aaRS在細胞中的function and role…………………….. 36 圖3、one gene two products………………………………………………... 37 圖4、sequence context……………………………………………………… 37 圖5A、ALA1基因的5’序列………………………………………………... 38 圖5B、酵母菌的AlaRS與其它不同物種的細胞質AlaRS N 端序列比對………………………………………………………….. 39 圖6A、以5-FOA培養基測試各種不同的ALA1突變基因 之互補能力………………………………………………………….. 40 圖6B、以YPG培養基測試各種不同的ALA1突變基因之互補能力…… 41 圖7A、以5-FOA培養基測試各種不同的ALA1突變基因之互補能力… 42 圖7B、以YPG培養基測試各種不同的ALA1突變基因之互補能力…… 43 圖8A、ALA1 基因前端序列(-1 ~ -120 bp)作不同的突變之後lexA 基因融合所構築的質體……………………………………………. 44 圖8B、西方點漬法觀察 in vivo中蛋白質的表現……………………….... 45 表1. Class I及Class II 的分類…………………………………………….. 46 表2. Class I及Class II主要特性……………………………………………46 表3、各種不同的ALA1突變基因及其互補能力測試…………………… .47 表4、各種不同的ALA1突變基因及其互補能力測試…………………… .48

    參考文獻
    Arnez. J. G. and Moras, D. (1997) Structural and functional considerations of the amino-acylation reaction. Trends. Biochem. Sci. 22(6): 211-6.
    Birnboim, H. C., and Doly, J. (1980) A rapid alkaline extraction procedure for screening recombinant plamid DNA. Nucleic acid Res. 7: 1513-1523
    Bradford, M. M. (1976) A rapid and sensitive method of the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
    Burbaum, J. J. and Schimmel, P. (1991) Structional relationships and the classification of aminoacyl-tRNA synthetase. Journal of Biological chemistry 266: 16965-16968
    Carter, C. W. Jr. (1993) Cognition, mechanism, and evolutionary relationships in aminoacyl-tRNA synthetases. Annu. Rev. Biochem. 62: 715-748
    Chatton, B., Walter, P., Ebel, J.-P., Lacroute, F., and Fasiolo, F. (1988) The yeast VAS1 gene encodes both mitochondrial and cytoplasmic valyl-tRNA synthetases. J. Biol. Chem. 263: 52-57.
    Cigan, A. M., Pabich, E. K., and Donahue, T. F. (1988) Mutational analysis of the HIS4 translational initiator region in Saccharomyces cerevisiae. Mol. Cell. Biol. 8: 2964-2975.
    Clements, J. M., Laz, T. M., and Sherman, F. (1988) Efficiency of translation initiation by non-AUG codons in Saccharomyces cerevisiae. Mol. Cell. Biol. 8: 4533-4536.
    Cusack, S. (1997) Aminoacyl-tRNA synthetases. Current Opinion in Structural Biology 7: 881-889
    Donahue, T. F. and Cigan, A. M. (1988) Genetic selection for mutations that reduce or abolish ribosomal recognition of the HIS4 translational initiator region. Mol. Cell. Biol. 8: 2955-2963
    Felter, S., Diatewa, M., Schneider, C., and Stahl, A. J. (1981) Yeast mitochondrial and cytoplasmic valyl-tRNA synthetases. Biochem. Biophys. Res. Commun. 98: 727-734.
    Giegé, R., Sissler, M., and Florentz, C. (1998) Universal rules and idiosyncratic features in tRNA identity. Nucleic Acids Res. 26: 5017-5035
    Imataka, H., Olsen, H. S., and Sonenberg, N. (1997) A new translational regulator with homology to eukaryotic translation initiation factor 4G. EMBO J. 16: 817-825
    Kozak, M. (1989) Context effects and inefficient initiation at non-AUG codons in eukaryotic cell-free translation systems. Mol. Cell. Biol. 9: 5073-5080.
    Kozak, M. (1990) Downstream secondary structure facilitates recognition of initiator codons by eukaryotic ribosomes. Proc. Natl. Acad. Sci. USA 87: 8301-8305.
    Kozak, M. (1991) Structural features in eukaryotic mRNAs that modulate the initiation of translation. J. Biol. Chem. 266: 19867-19870.
    Kozak, M. (1997) Recognition of AUG and alternative initiator codons is augmented by G in position +4 but is not generally affected by the nucleotides in positions +5 and +6. EMBO J 16(9):2482-92
    Kozak, M. (1999) Initiation of translation in prokaryotes and eukaryotes. Gene 234: 187-208
    Manistic, T., et al. (1989) Molecular cloning a laboratory manual. Cold Spring Harbor Laboratory.
    Martinis, S. A., Plateau, P., Cavarelli, J., and Florentz, C. (1999) Aminoacyl-tRNA synthetase: A new image for a classical family. Biochimie 81:683-700
    Martinis, S. A. and Schimmel, P. (1996) In Escherichia coli and Salmonella Cellular and Molecular Biology, ed. Neidhardt, F. C. (Am. Soc. Microbiol., Washington, DC), 2nd Ed., pp. 887-901
    Maréchal-Drouard, L., Weil, J. H., and Dietrich, A. (1993) Transfer RNAs and transfer RNA genes in plants. Annu. Rev. Cell. Biol. 8: 115-131.
    Mireau, H., Lancelin, D., and Small, I. D. (1996) The same Arabidopsis gene encodes both cytosolic and mitochondrial alanyl-tRNA synthetases The Plant Cell 8: 1027-1039
    Nakai, K. and Horton, P. (1999) PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization Trends Biochem. Sci. 24: 34-36
    Natsoulis, G., Hilger, F., and Fink, G. R. (1986) The HTS1 gene encodes both the cytoplasmic and mitochondrial histidine tRNA synthetases of S. cerevisiae. Cell 46: 235-243.
    Nett, J. H., Kessl, J., Wenz, T., and Trumpower, B. L. (2001) The AUG start codon of the Saccharomyces cerevisiae NFS1 gene can be substituted for by UUG without increased initiation of translation at downstream codons. Eur. J. Biochem. 268: 5209-5214
    Pelchat, M. and Lapointe, J. (1999) Aminoacyl-tRNA synthetase genes of Bacillus subtilis: organization and regulation. Biochem. Cell Biol. 77: 343-347
    Ribas de Pouplana, L. and Schimmel, P. (1997) Reconstruction of quaternary structures of Class II tRNA synthetases by rational mutagenesis of a conserved domain. Biochemistry. 36: 15041-15048
    Ripmaster, T. L., Shiba, K., and Schimmel, P. (1995) Wide cross-species aminoacyl-tRNA synthetase replacement in vivo: yeast cytoplasmic alanine enzyme replaced by human polymyositis serum antigen. Proc. Natl. Acad. Sci. USA 92: 4932-4936
    Sherman, F., Stewart, J. W., and Schweingruber, A. M. (1980) Mutants of yeast initiating translation of iso-1-cytochrome c within a region spanning 37 nucleotides. Cell 20: 215-222.
    Sikorski, R. S. and Hieter, P. (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19-27
    Souciet, G., Menand, B., Ovesna, J., Cosset, A., Dietrich, A., and Wintz, H. (1999) Characterization of two bifunctional Arabdopsis thaliana genes coding for mitochondrial and cytosolic forms of valyl-tRNA synthetase and threonyl-tRNA synthetase by alternative use of two in-frame AUGs. Eur. J. Biochem. 266: 848-854.
    Xiao, J. H., Davidson, I., Matthes, H., Garnier, J. M., and Chambon, P. (1991) Cloning, expression, and transcriptional properties of the human enhancer factor TEF-1. Cell 65: 551-568
    Yoon, H and Donahue, T, F. (1992) Control of translation initiation in Saccharomyces cerevisiae. Mol. Biol. 6: 1413-1419

    QR CODE
    :::