跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蔡憲文
Hsien-wen Tsai
論文名稱: 以時變學習因子策略改良粒子群演算法
Improvement of Acceleration Coefficients on Particle Swarm Optimization Algorithm
指導教授: 莊堯棠
Yau-tarng Juang
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 98
語文別: 英文
論文頁數: 82
中文關鍵詞: 粒子群演算法自適應Fuzzy學習因子
外文關鍵詞: Particle Swarm Optimization, acceleration coefficients, adaptation, Fuzzy
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文為了改善粒子群演算法工作性能且解決不易選取合適的學習因子,提出了一個以自適應模糊粒子群演算法[5]為基礎的改良式演算法稱之為TV-PSO。大多粒子群演算法選擇學習因子方式是以疊代的方式來決定c1、c2值。即在初期希望有較高的探索能力,使得粒子能分佈於解空間當中,而不是往區域最佳解方向找尋,而後期有較高的收斂能力,讓粒子進可能收斂於最佳解中。但是這樣的方式會造成有一種強迫收斂的行為產生, 容易導致粒子收斂於區域最佳解,我們在此將一種新概念導入粒子群演算法內,粒子根據前一代最佳解和目前此代最佳解來選擇目前所需c值,每一次疊代中粒子根據最佳解找尋狀況決定是否該繼續探索新區域或者轉入局部搜尋加速收斂,可避免落入區域最佳解。最後我們將提出的新方法分別測試14種經典不同複雜之函數評估此演算法效率,並與傳統粒子群演算法、自適應模糊粒子群演算法和近幾年熱門的方式PSO-TVAC、TA- PSO做比較,最後結果顯示TV-PSO在搜尋能力和性能表現皆優於其他演算法,證明此演算法是可行的。


    In order to improve the performance of Particle Swarm Optimization (PSO) algorithm and to overcome the difficulty of selecting the appropriate acceleration coefficients, this thesis proposes an improved algorithm based on adaptive-fuzzy PSO algorithm [5], TIME-VARYING Particle Swarm Optimization, called TV-PSO. First, an adaptive-fuzzy PSO is adapted to generate the curves of the acceleration coefficients versus the differences between the consecutive values of two consecutive fitness functions. Then, each curve is simplified to three line segments to present the time-varying acceleration coefficients.
    Finally, 14 classic functions with different complexities are utilized to test our proposed algorithm. As compared with the traditional PSO algorithm, Adaptive-fuzzy PSO Algorithm, PSO-TVAC and TA-PSO, it is found that the proposed time-varying coefficients are easy to be applied in the PSO algorithm and a better performance is obtained.

    摘要……………………………………………………………………………………………………………………………………….i Abstract…………………………………………………………………………………………ii Acknowledgement………………………………………………………………………………………………………………iii Symbol table…………………………………………………………………………………………………………………iv Table of Content……………………………………………………………………………..vi List of Figures………………………………………………………………………………viii List of Tables…………………………………………………………………………………x Chapter 1 Introduction………………………………………………………………………1 1.1 Motivation…………………………………………………………………..……….1 1.2 Objectives…………………………………………………………………………4 1.3 Framework of the study……………………………………………………………5 Chapter 2 PSO and adaptive fuzzy PSO algorithms…………………………………………6 2.1 Mathematical model for optimization………………………………………………6 2.2 Particle Swarm Optimization………………………………………………………7 2.2.1 Basic model for PSO………………………………………………………7 2.2.2 Flowchart and Basic Code for PSO………………………………………9 2.2.3 PSO work flowchart…………………………………………………………12 2.2.4 Inertia weight for constants…………………………………………………13 2.2.5 Liner inertia reduction………………………………………………………13 2.2.6 Limitation of maximum velocity…………………………………………14 2.2.7 Constriction factor…………………………………………………………15 2.3 Adaptive Fuzzy Particle Swarm Optimization (AF-PSO)………………………….16 Chapter 3 TV-PSO……………………………………………………………………………19 vii 3.1 Introduction…………………………………………………….…………………19 3.2 Essential design principle and procedure of TV-PSO……………………………22 3.3 Ci(dfn) for TV-PSO……………………………………………………………….26 3.3.1 Ci(dfn) testing results for 10-D……………………………….……………28 3.3.2 Ci(dfn) testing results for 30-D……………………………………………35 3.3.3 Operation flow and basic code for TV-PSO…………………………………46 3.3.4 TV-PSO flowchart………………………………………………………49 Chapter 4 Experimental results………………………………………………………………50 4.1 Test procedure and methods………………………………………………………50 4.2 Testing Results for 10-D…………………………………………………………..52 4.3 Testing Results for 30-D………………………………………………………….57 Chapter 5 Conclusions and future perspectives……………………………………………….63 5.1 Conclusions…………………………………………………………………………63 5.2 Future perspectives…………………………………………………………………64 Reference……………………………………………………………………………………66

    [1] A. Ratnaweera, S. K. Halgamuge, and H. C. Watson,“Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients,” IEEE Trans. Evol- Comput, vol. 8, no. 3 ,Jun. 2004,pp. 240–255
    [2] Y. Yang, Y Tan, J Zeng, ”A Quadratic Particle Swarm Optimization and its Self-Adaptive Parameters,” Proceedings of the 6th World Congress on Intelligent Control and Automation, June 21 - 23, 2006.
    [3] W Guo, G chen, X Feng, ”A New Strategy of Acceleration Coefficients for Particle Swarm Optimization,” Proceedings of the 10th International Conference on Computer Supported Cooperative Work in Design, may, 2006, page(s) 1 – 5.
    [4] P. N. Suganthan, ”Particle swarm optimizer with neighborhood operator,” in Proc. IEEE Int. Congr. Evolutionary Computation, vol. 3, 1999, Page(s): 1958 – 1962.
    [5] Y. T. Juang, and S. L. Tung, H. C. Chiu, ”Adaptive Fuzzy Particle Swarm Optimization
    for Global Optimization of Multimodal Functions,” revise.
    [6] J. Kennedy, and R. C. Eberhart, “Particle Swarm Optimization,” Proceedings of IEEE International Conference on Neural Networks, Vol. IV, Feb. 2002, pp. 1942−1948 (1995).
    [7] M. Clerc and J. Kennedy, “The particle swarm-explosion, stability and convergence in a multidimensional complex space,” IEEE Trans. Evol. Comput. vol. 6, no. 1, pp. 58–73.
    [8] Y. Shi, and R. C. Eberhart, “A Modified Particle Swarm Optimizer,” Proceedings of the IEEE International Conference on Evolutionary Computation, pp. 69−73 (1998).
    [9] Y. Shi, and R. C. Eberhart, “Parameter Selection in Particle Swarm Optimization,” V. W. Porto, N. Saravanan, D. Waagen, and A. E. Eiben (eds), Lecture Notes in Computer Science, 1447, Evolutionary Programming VII, Springer, Berlin, pp. 591−600(1998).
    [10] C. W. Reynolds, “Flock, Herds, ans schools: A Distributed behavioral Model,” Computer Graphics, Vol. 21, No. 4, 1987, pp.25-34.
    [11] R. C. Eberhart, Y. Shi, “Comparison between genetic algorithms and particle swarm optimization,” 1998 Annual Conference on Evolutionary Programming, Dan Diego,1998.
    [12] M. Clerc, “The Swarm and the Queen: Towards a Deterministic and Adaptive Particle Swarm Optimization,” Proceedings of the Congress on Evolutionary Computation, Vol. 3, pp. 1951−1957 (1999).
    [13] P.J Angeline, ”Using selection to improve particle swarm optimization,” in: Process dings of IEEE congress on Evolutionary Computation, 1998,pp 84- 89
    [14] S. T. Hsieh, T. Y. Sun, C. C. Liu, S. J. Tsai, ”Efficient Population Utilization Strategy for Particle Swarm Optimizer,” IEEE Transactions on Systems Man and Cybernetics-Part B 39(2009) 444-456
    [15] J. Kennedy, R. Eberhart, Y. Shi, “Swarm Intelligence, Morgn Kauffman, California,2001.
    [16] J. J. Liang, A. K. Qin, P. N. Suganthan and S. Baskar, “Comprehensive learning particle swarm optimizer for global optimization of multimodal functions,” IEEE Transactions on Evolutionary Computation, vol.10, no.3, pp.281-295, 2006.
    [17] C. J. Lin, C. H. Chen, C. Y. Lee, ”Efficient Immune-Based Particle Swarm Optimization Learning for Neuro-Fuzzy Networks Design,“ JOURNAL OF INFORMATION SCIENCE AND ENGINEERING (2008)1505-152
    [18] V. Miranda, N. Fonseca, “EPSO - best-of-two-worlds meta-heuristic applied to power system problems,” in: Proceedings of IEEE congress on Evolutionary Computation, vol. 2, 2002,pp. 12-17
    [19] V. Miranda, “evolutionary algorithm with Particle swarm movements,” in: Proceeding of the 13th International Conference, ISAP, 2005, pp. 6-21
    [20] V. Miranda, N. Fonseca, “EPSO - Evolutionary Particle Swarm Optimization, a New Algorithm with Applications in Power Systems,” in: Proceeding of IEEE Trans. Distribution Conf. Exhibition, vol. 2, 2002, pp. 6-10.
    [21] M. A. Montes de Oca, J. pena, T. Stutzle, C. Pinciroli, m. Dorigo, “Heterogeneous particle swarm optimizers,” in: Proceeding of IEEE congress on Evolutionary Computation, 2009, pp. 698-705.
    [22] M. O''Neill and A. Brabazon, ”Self-Organizing Swarm (SO Swarm): A Particle Swarm Algorithm for Unsupervised Learning,” in: Proceeding of IEEE congress on Evolutionary Computation, 2006, pp. 634-639.
    [23] M. Pant, T. Radha ,V. P. Singh, ”A New Particle Swarm Optimization with Quadratic Interpolation,” in: Proceeding of International Conference on Computational Intelligence and Multimedia Applications, IEEE Computer Society, 2007, pp.55-60.
    [24] K. E. Parsopoulos, M.N. Vrahatis, ”On the Computation of All Global Minimizers
    Through Particle Swarm Optimization,” IEEE Transactions on Evolutionary Computation 8(2004) 211 - 224.
    [25] F. van den Bergh, A. P. Engelbrecht, ”A Cooperative Approach to Particle Swarm Optimization,” IEEE Transactions on Evolutionary Computation 8(2004) 225-239.
    [26] Y. Wang, Y. Yang, “Particle swarm optimization with preference order ranking for multi-objective optimization,” Information Sciences 179(2009) 1944-1959.
    [27] X.Yao, Y.Liu, G. Lin, “Evolutionary Programming Made Faster,” IEEE Transactions on Evolutionary Computation 3(1999), 82-102.
    [28] J. HU , J. Zeng , y. yang, ”A two-order Particle Swarm Optimization Model and the Selection of its Parameters”, Proceedings of the 6th World Congress on Intelligent Control and Automation, June , 2006, 3440 – 3445.
    [29] R. C. Eberhart and Y. Shi, “Tracking and optimizing dynamic systems with particle swarms,” in Proc. IEEE Congr. Evolutionary Computation 2001, Seoul, Korea, 2001, pp. 94–97.
    [30] E. Ozcanand and C. K. Mohan, “Particle swarm optimization: Surfing the waves,” in Proc. IEEE Congr. Evolutionary Computation 1999, vol.3, Washington, DC, 1999, pp. 1944–1999.
    [31] Y. Shi, R. C. Eberhart, “Parameter selection in particle swarm optima- zation,” in Lecture Notes in Computer Science Evolutionary Programming VII, vol.1447, Proc. 7th Int. Conf. Evolutionary Programming, Mar. 1998, pp.591–600.
    [32] T. Ziyu , Z. Dingxu, ” A Modified Particle Swarm Optimization with an Adaptive Acceleration Coefficients,” Information Processing, 2009. APCIP 2009. Asia-Pacific Conference on, vol. 2, 2009, 330-332.
    [33] D. Srinivasan, W. H . Loo, and R. L. Cheu, ” Traffic incident detection using particle swarm optimization, Swarm Intelligence Symposium,” Proceedings of the 2003 IEEE, Page(s):144-151.

    QR CODE
    :::