跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃烱焜
Huang,Chiung-Kun
論文名稱: 氧化鎘鋅與氧化鎂鋅之光學性質分析
Optical properties of ternary alloy Zn(Cd, Mg)O
指導教授: 鄭劭家
Cheng,Chao-Chia
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 107
中文關鍵詞: 氧化鎘鋅氧化鎂鋅光激螢光光譜拉曼光譜侷域態空間相關模型
外文關鍵詞: ZnCdO, ZnMgO, photoluminescence spectra, Raman spectra, localized state, spatial correlation model.
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文藉由光激螢光光譜(PL spectra)及拉曼光譜(Raman spectra)來分析鎘濃度為0%、9%、14%、17%及20%的氧化鎘鋅樣品與鎂濃度為0%、3.8%、11.5%、13.2%的氧化鎂鋅的光學特性及聲子行為。
    藉由氧化鋅摻雜不同濃度的鎂原子或鎘原子形成可以氧化鎂鋅或氧化鎘鋅,為調變能隙與發光波段的方法之一,但同時也會使樣品螢光訊號半高寬增加。由變溫光激螢光光譜可知,氧化鎘鋅與氧化鎂鋅會形成侷域態(localized state),造成螢光訊號峰值隨溫度上升呈現異常藍移的現象。藉由Eliseev模型可以分析不同樣品中侷域能態的能量分布情形。
    由拉曼光譜可知,鎂原子與鎘原子的摻雜會使氧化鎂鋅與氧化鎘鋅拉曼訊號峰值偏移、半高寬增加且呈現不對稱的情況,表示晶格振盪較為混亂,聲子受到摻雜原子侷限,造成選擇規則q=0的限制更為寬鬆。在論文中我們分別利用MREI模型與空間相關模型(Spatial correlation model) 的理論預測和實驗上拉曼訊號峰值偏移量與不對稱性進行比較。


    In this work, we measured the photoluminescence spectra and Raman spectra to analyze the optical properties and phonon behaviors of Zn1-xCdxO (x = 0%, 9%, 14%, 17%, 20%) and Zn1-xMgxO (x = 0%, 3.8%, 11.5%, 13.2%).
    Zinc oxide (ZnO) with different content Mg or Cd incorporation is one of methods to tune bandgap and emission wavelength, but also one of reasons to make PL signal broadening. From temperature dependent PL spectra, the localized states in Zn1-xCdxO and Zn1-xMgxO were observed and there will be an anomalous blue shift in its temperature dependent PL peak. Then, Eliseev’s model can be used to realize the dispersive energy of the localized state.
    From our Raman spectra, by Cd (Mg) incorporation, LO phonon signal peak position is red-shifting (blue-shifting) and phonon signal peak shape is broadening and becoming asymmetric. This is described that the disorder of lattice vibration and there exists the confinement effect which leads to a relaxation of the q=0 selection rule. In this essay, we compare experimental value of Raman peak shift and asymmetric Raman peak shape with theoretical value calculated by MREI model and spatial correlation model.

    摘要 i Abstract ii 致謝 iii 目錄 v 圖目錄 vii 表目錄 x 第一章 簡介 1 1-1 研究動機 3 第二章 基本原理 4 2-1 氧化鎘(鎂)鋅 4 2-2 氧化鎘(鎂)鋅的基本光學性質 5 2-2.1 光激發螢光原理 6 2-2.2 侷域態 7 2-2.3 侷域態引起之螢光訊號偏移 9 2-3 氧化鎘(鎂)鋅的晶格特性與聲子模態 14 2-3.1 拉曼散射原理 20 2-3.2 摻雜濃度與拉曼訊號偏移的關係 26 2-3.3 拉曼光譜訊號之不對稱性 31 第三章 實驗樣品與實驗裝置 36 3-1 實驗樣品介紹 36 3-2 光激螢光光譜實驗 38 3-3 拉曼光譜實驗 40 第四章 實驗結果與討論 43 4-1 氧化鎘(鎂)鋅光激螢光光譜 44 4-1.1 氧化鎘(鎂)鋅螢光訊號之半高寬分析 47 4-1.2 氧化鎘(鎂)鋅變溫螢光光譜 51 4-2 拉曼光譜 72 4-2.1 不同鎘(鎂)濃度之氧化鎘(鎂)鋅之拉曼光譜 75 4-2.2 LO聲子模態譜型分析 80 第五章 結論 85 參考文獻 88 附錄A 91

    [1] T.Makino et al., “Band gap engineering based on MgxZn1-xO and CdyZn1-yO ternary alloy films”, J. Appl. Phys. 78, 1237 (2001)
    [2] C.S.Yang et al., “Optical properties of the ZnSe1-xTex epilayers grown by molecular beam epitaxy”, J. Appl. Phys. 83, 2555 (1998)
    [3] P.G.Eliseev et al., “Blue temperature-induced shift and band-tail emission in InGaN-based light sources”, Appl. Phys. Lett. 71, 569 (1997)
    [4] P.G.Eliseev., “The red spectral shift in partially disordered semiconductors, J. Appl. Phys. 93, 5404 (2003)
    [5] 李芳葦,“高銦氮化銦鎵薄膜之成長與特性”,國立交通大學 電子物理所 碩士論文(2010)
    [6] 郭文泉,“氮化銦鎵/氮化鎵多層量子井之光學特性研究”,國立中央大學 物理所 碩士論文(1999)
    [7] Max Born and Kun Huang., “Dynamical Theory of Crystal Lattices”, Oxford Classic Texts in the Physical Sciences, Clarendon Press,(1954)
    [8] T.Hanada “Oxide and Nitride Semiconductors Processing, Properties, and Applications”, p.1-p.19, Springer (2009)
    [9] Kenji Yamamoto et al., "Structural and optical properties of Zn(Mg,Cd)O alloy films grown by remote-plasma-enhanced MOCVD", J. Cryst. Growth 312 1703–1708 (2010)
    [10] 劉漢鈞,“氮化銦奈米柱之光學性質研究”,國立中央大學 物理所 碩士論文(2006)
    [11] I.F.Chang et al., “Application of a Modified Random-Element-Isodisplacement Model to Long-Wavelength Optic Phonons of Mixed Crystals”, Phys. Rev. 172, 924 (1966)
    [12] Kouji Hayashi et al, “Raman Scattering in ZnSxSe1-x Alloys”, Jpn. J. Appl. Phys 30, Part 1, Number 3,501-505 (1991)
    [13] H.Richter et al., “The One Phonon Raman Spectrum in Microcrystalline Silicon”, Solid State Commun. 39, 625 (1981)
    [14] 黃馨毅,“氧化鎘鋅薄膜光學性質分析,國立中央大學” 物理所 碩士論文(2013)
    [15] 葉蓉霏,“以電漿輔助式分子束磊晶法成長氧化鎂鋅磊晶薄膜與特性研究”,國立交通大學 電子物理所 碩士論文(2012)
    [16] V.A. Coleman and C. Jagadish, “Zinc Oxide Bulk, Thin Films and Nanostructures Processing, Properties, and Applications”, Ch1, Elsevier (2006)
    [17] T.Y.Wu et al., “Photoluminescence of localized excitons in ZnCdO thin films grown by molecular beam epitaxy”, Solid State Commun. 237-238, 1-4 (2016)
    [18] E.F.Schubert et al., “Alloy broadening in photoluminescence spectra of Al1-xGaxAs”, Phys. Rev. B 30, 813 (1984)
    [19] D.W.Hamby et al., “Temperature dependent exciton photoluminescence of bulk ZnO”, J. Appl. Phys. 93, 3214 (2003)
    [20] K.F.Chien et al., “Thermal-activated carrier transfer in ZnCdO thin film grown by plasma-assisted molecular beam epitaxy”, J. Cryst. Growth 378 208–211 (2013)
    [21] 許維綸,“以電漿輔助式分子束磊晶成長之氧化鎘鋅”,國立交通大學 電子物理所 碩士論文(2012)
    [22] Hadis Morkoc and Umit Ozgur “Zinc Oxide: Fundamentals, Materials and Device Technology”, Ch1, Wiley, (2009)
    [23] R.Oliva et al., “High-pressure Raman scattering of CdO thin films grown by metal-organic vapor phase epitaxy”, J. Appl. Phys. 113, 053514 (2013)
    [24] O. Madelung et al., II-VI and I-VII Compounds; Semimagnetic Compounds “Cadmium oxide (CdO) optical and photoelectric properties, dielectric constants, plasmon energy”, Springer (1965)
    [25] J.D.Ye et al., “Effects of alloying and localized electronic states on the resonant Raman spectra of Zn1-xMgxO nanocrystals”, Appl. Phys. Lett. 91, 091901 (2007)

    QR CODE
    :::