跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蕭信助
Sin-Jhu Siao
論文名稱: 有機發光二極體激子光電特性模擬研究
指導教授: 韋安琪
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 能源工程研究所
Graduate Institute of Energy Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 75
中文關鍵詞: OLED電模擬空間電荷限制電流電荷遷移率能量轉移電極淬熄激子
外文關鍵詞: Electrical simulation of OLED, Space Charge Limited Current, Mobility, Energy transfer, Electrode quenching, Exciton
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • OLED發光原理是由於電子、電洞在發光層內再結合形成激子,激子從激發態回到基態時會發光,而激子的生成與電子、電洞的注入濃度以及有機材料的電荷遷移率有關。為探討有機層中的激子數,本論文利用空間電荷限制電流法,依據有機材料實際情況,來計算有機材料的電荷遷移率,接著考慮主發光體與客發光體之間的能量轉移的關係,及考慮電極淬熄對激子的影響,再結合所推算之電荷遷移率,建立模擬模型,以模擬出激子在有機層內的分布情況。
    將模擬出的激子濃度分布曲線,以電流密度修正,並積分激子濃度分布曲線,以計算出有機層內的激子數,而可得知電流密度與激子數之間的關係,最後,利用實際OLED元件做輝度測量,並藉由模擬與實驗的結果之比較,探討激子數與輝度之間的關係,以建立預測OLED元件效能的電特性模擬模型。


    The principle of OLED light-emission lies in the recombination of electrons and holes, resulting in the generation of excitons in the organic layers. The excitons emit light when they return to the ground state from the excited state. Since the generation of excitons relates to the concentrations of injected electron and hole, mobility of material, etc, this study explored the mobility by the method of space charge limited current (SCLC) according to the actual material conditions. Then, the energy transfer between the host and the guest materials and the electrode quenching effect on excitons were considered along with the measured mobility for calculating the exciton density distribution within the organic layers.
    Afterward, the exciton density distribution curve was correct by the measured current density. With the integral of exciton density distribution curve, the number of excitons within the organic layers was calculated, and the relationship between the current density and the number of excitons were derived. Finally, luminance of OLED elements was measured to explore the relationship between the number of excitons and the luminance and to set up an electronic simulation model for predicting the performance of OLED devices.

    摘要 I Abstract II 致謝 III 圖目錄 VI 表目錄 VIII 參數目錄 IX 第一章、緒論 1 1-1 研究背景 1 1-2 研究動機 3 1-3 文獻回顧 4 1-4 論文架構 8 第二章、基礎原理與理論 9 2-1 OLED基本原理 9 2-1-1 發光機制 11 2-1-2 能量轉移 12 2-1-3 載子捕捉(Carrier trapping) 13 2-2帕松方程式(Poisson’s equation) 14 2-3空間電荷限制電流法 15 2-4 激子連續擴散方程式 16 2-5 小結 17 第三章、模擬與計算方法 18 3-1 OLED電特性之模擬流程 18 3-2 電壓分布模擬 19 3-3 電荷遷移率(mobility)計算 20 3-4 電洞、電子注入濃度與分布模擬 24 3-5 電極淬熄模型(Electrode quenching model) 25 3-6 激子濃度分布模擬 26 3-7 小結 28 第四章、模擬結果與討論 29 4-1 電壓分布 31 4-2 電荷遷移率計算結果 33 4-3 電洞、電子濃度分布 35 4-4 電極淬熄 38 4-5 激子濃度分布 39 4-6 小結 43 第五章、模擬修正與運用 44 5-1 模擬J-V曲線 45 5-2 修正激子濃度模擬 48 5-3 J-V曲線之運用 50 5-3-1 n-J 關係圖 50 5-3-2 L-n 關係圖 52 5-4 小結 55 第六章、結論與未來展望 56 6-1 結論 56 6.2 未來展望 57 參考文獻 59

    [1] OLED元件特性,取自:錸寶科技股份有限公司,
    http:// http://www.ritdisplay.com/index.php/tw/products/oled
    [2] 顧鴻壽、周本達、陳密、張德安、樊雨心和周宜衡等合編,光電平面面板顯示器基本概論,高立圖書,新北市,民91。
    [3] M. pope, H. P. Kallmann and P. Magnante, “Electroluminescence in Organic Crystals,” Journal of Chemical Physics, 38, 2042-2043 (1963).
    [4] C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Applied Physics Letters, 51(12), 913-915 (1987).
    [5] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns and A. B. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature, 347, 539-541 (1990).
    [6] 彰化師大藍光實驗室OLED網,http://ykuo.ncue.edu.tw/oled/index.htm.
    [7] 莊東漢、黃漢邦、謝國煌、蔡豐羽、陳炳宏和鄭晃忠等合編,平面顯示器概論,高立圖書,新北市,民97。
    [8] C. C. Lee, M. Y. Chang, Y. D. Jong, T. W. Huang, C. S. Chu and Y. Chang, “Numerical Simulation of Electrical and Optical Characteristics of Multilayer Organic Light-Emitting Devices,” Japanese Journal of Applied Physics, 43, 7560-7565 (2004).
    [9] C. C. Lee, M. Y. Chang, P. T. Huang, Y. C. Chen, Y. Chang and S. W. Lin, “Electrical and optical simulation of organic light-emitting devices with fluorescent dopant in the emitting layer,” Japanese Journal of Applied Physics, 101, 114501 (2007).
    [10] C. C. Lee, Y. D. Jong, P. T. Huang, Y. C. Chen, P. J. Hu and Y. Chang, “Numerical Simulation of Electrical Model for Organic Light-Emitting Devices with Fluorescent Dopant in the Emitting Layer,” Japanese Journal of Applied Physics, 44, 8147-8152 (2005).
    [11] M. Stoessel, G. Wittmann, J. Staudigel, F. Steuber, J. Blässing, W. Roth, H. Klausmann, W. Rogler, J. Simmerer, A. Winnacher, M. Inbasekaran and E. P. Woo, “Cathode-induced luminescence quenching in polyfluorenes,” Journal of Applied Physics, 87, 4467-4475 (2000).
    [12] S. T. Lee, Z. Q. Gao and L. S. Hung, “Metal diffusion from electrodes in organic light-emitting diodes,” Applied Physics Letters, 75, 1404-1406 (1999).
    [13] B. Ruhstaller, E. Knapp, B. Perucco, N. Reinke, D. Rezzonico and F. Müller, “Advanced Numerical Simulation of Organic Light-emitting Devices,” Physics, 434-458 (2011).
    [14] T. Yasuda, Y. Yamaguchi, D. C. Zou and T. Tsutsui, “Carrier Mobility in Organic Electron Transport Material Determined from Space Charge Limited Current,” Japanese Journal of Applied Physics, 41, 5626-5629 (2002).
    [15] C. D. J. Blades and A. B. Walker, “Simulation of organic light-emitting diodes,” Synthetic Metals, 111-112, 335-340 (2000).
    [16] A. L. Burin and M. A. Ratner, “Exciton Migration and Cathode Quenching in Organic Light Emitting Diodes,” Journal of Chemical Physics, 104, 4704-4710 (2000).
    [17] 田民波編輯,平面顯示器之技術發展,五南圖書,新北市,民97。
    [18] M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson and S. R. Forrest, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature, 395, 151-154 (1998).
    [19] 陳金鑫和黃孝文編輯,OLED有機電激發光材料與元件,五南圖書,新北市,民94。
    [20] P. K. Wolber and B. S. Hudson, “An analytic solution to the förster energy transfer problem in two dimensions,” Biophysical Journal, 28, 197-210 (1979).
    [21] D. L. Dexter, “A Theory of Sensitized Luminescence in Solids,” Journal of Chemical Physics, 21, 836-850 (1953).
    [22] H. Suzuki and S. Hoshino, “Effects of doping dyes on the electroluminescent characteristics of multilayer organic light-emitting diodes,” Journal of Applied Physics, 79, 8816-8822 (1996).
    [23] X. Gong, J. C. Ostrowski, D. Moses, G. C. Bazan and A. J. Heeger, “Electrophosphorescence from a Polymer Guest-Host System with an Iridium Complex as Guest: Förster Energy Transfer and Charge Trapping,” Advanced Functional Materials, 13, 439-444 (2003).
    [24] K. K. E. Neuendorf, J. P. Mehl Jr. and J. A. Jackson (Eds.), Glossary of Geology, Springer Science and Business Media, American, 2005.
    [25] 黃俊達、鄭湘原編輯,半導體元件概論,高立圖書,新北市,民97。
    [26] 劉傳璽編輯,半導體元件物理與製程,五南圖書,新北市,民100。

    QR CODE
    :::