跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃牧洵
Mu-Hsun Huang
論文名稱: 台灣GPS 測站的錯移分析
Offsets analysis of GPS stations in Taiwan
指導教授: 張午龍
Wu-Lung Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 地球科學學系
Department of Earth Sciences
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 97
中文關鍵詞: GPS時間序列錯移雜訊
外文關鍵詞: GPS, time series, offsets, noise
相關次數: 點閱:20下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 塊運動和地殼形變相關研究的資料常以全球衛星定位系統(Global Positioning System,簡稱GPS)為基礎,其中由GPS測站每日座標解所形成的時間序列(time series)除了可提供區域變形速度及應變率的估算外,也可偵測地表運動隨時間的演化。然而,GPS時間序列時常會在某些時間點上發生不同大小的非連續變化,其被稱為時間序列的錯移(offsets)。造成錯移的可能原因有地震、地滑、地層陷落、測站環境擾動、資料處理方式變化、儀器更換或韌體更新等,但大多數是不明因素。未被先驗提出的錯移將會影響時間序列的模型分析,進而在測站速度估算上引入不同程度的偏差。因此有效找出錯移會對時間序列的研究很有幫助。然而,隨著GPS連續測站資料的增加,資料處理時以人為方式逐條檢視時間序列中的不連續變化將變得不切實際。本研究使用自動偵測技術來解析GPS時間序列中錯移的發生時間與大小,並將結果以統計方式做系統性的展現及歸類。除了以此探索可能存在的地殼變形訊號外,也期望能將這些成果提供給相關的測網管理單位作為測站維護的紀錄與參考。本研究使用全台各地共495個GPS連續測站,並利用JUST(Ghaderpour et al. 2018)以及Hector(Bos et al. 2013)兩種方法對觀測長度大於4年的資料進行分析,以偵測時間序列中潛在的錯移,並與已知的地震事件以及測站儀器更換時間進行比對。初步結果顯示利用Hector找到的錯移有75%對應到地震事件、8%對應到儀器更換,而利用JUST找到的錯移有78%對應到地震事件、3%對應到儀器更換。在錯移量與震央-測站的距離的分析當中也發現到大部分的錯移量跟距離呈現反比,但是會根據地震對於各個地區造成的影響(如震度等)出現例外,對於可能是地震所造成的offset 需要如果只是根據發生時間判定會有誤,且自動偵測方法會因為資料缺失或者其他因素而將錯移發生時間定在錯誤的地方導致誤判錯移發生的原因。


    GPS are essential for many geophysical applications such as crust deformation, plate tectonic, and so on. The GPS time series not only can calculate the strain rate of the area, but also can monitor the change of the surface. However, there are some abrupt changes in the GPS time series called offsets. These offsets may be caused by seismic events, equipment changes, creep events, environmental change, metadata change, or unknown reasons. Removing offsets can greatly improve GPS velocity solution and strain rate calculation. Therefore, finding these offsets can greatly improve the related research. However, manually detecting offsets is impracticable since that GPS stations are gradually increase. In this research, I use two automated methods to detect offsets, and systematically display and classify offsets’ results in statistical manner. In addition to exploring possible crustal deformation signals, I also expected that these results can benefit relevant survey network management units as records and references for station maintenance. With 479 GPS stations in Taiwan, I apply two methods JUST (Ghaderpour et al. 2018) and Hector (Bos et al. 2013) to analyze their three-component time series where the data lengths are more than 4 years. The reason I choose JUST and Hector is that JUST can resolve seasonal signals very well while Hector can analyze noises in the time series. Results show that in the offsets detected by Hector, 75% are caused by earthquakes, and 8% are due to equipment changes. For the offsets which are detected by JUST, 78% are caused by earthquakes, and 3% are due to equipment changes.

    中文摘要 I 英文摘要 II 目錄 IV 圖目錄 V 表目錄 VII 第一章 緒論 1 1-1 研究動機與目的 1 1-2 文獻回顧 1 第二章 研究方法 4 2-1 JUST方法介紹 4 2-1-1 最小平方法與最小平方頻譜分析法 4 2-1-2 反洩漏最小平方頻譜分析法 6 2-1-3 Jump Upon Spectrum and Trend (JUST) 8 2-2 Hector方法介紹 9 2-2-1 最大概似估計法 9 2-2-2 利用Hector 分析雜訊模型 11 2-2-3 利用Hector進行錯移分析 12 第三章 結果與討論 20 3-1 模擬時間序列測試 20 3-3-1 雜訊對JUST錯移偵測的影響測試 20 3-3-2 JUST錯移閾值測試 21 3-2 測站簡介 21 3-2-1 GPS測站基本資訊 21 3-2-2 GPS資料處理 22 3-3 雜訊模型分析 23 3-4 錯移偵測分析 24 3-4-1 JUST分析結果 24 3-4-2 Hector分析結果 26 3-4-3 儀器更換錯移量分析 26 3-4-4 錯移量與震央距離分析 27 3-5 錯移偵測方法比較 29 第四章 結論 65 參考文獻 66 附錄 A 70

    Agnew, D. C. (1992), The time-domain behavior of power-law noises. Geophys. Res.
    Lett., 19(4), 333-336. doi:10.1029/91gl02832
    Akaike, H.(1974), A new look at the statistical model identification - IEEE Transactions
    on Automatic Control, https://ieeexplore.ieee.org/document/1100705/
    Amiri-Simkooei, A. R., Hosseini-Asl, M., Asgari, J., & Zangeneh-Nejad, F. (2019). Offset detection in GPS position time series using multivariate analysis. GPS Solutions, 23(1)
    Bevis, M. and Brown, A. (2014). Trajectory models and reference frames for crustal
    motion geodesy. Journal of Geodesy, 88:283–311.13. https://doi.org/10.1007/s10291-018-0805-z
    Bertiger, W., Bar‐Sever, Y., Dorsey A., Haines B., Harvey N., Hemberger, D., Heflin, M., Lu, W., Miller, M., Moore, A. W., Murphy, D., Ries, P., Romans, L., Sibois, A.,Sibthorpe, A., Szilagyi, B., Vallisneri, M., & Willis, P. (2020). GipsyX/RTGx, a new tool set for space geodetic operations and research. Advances in Space Research. https://doi.org/10.1016/j.asr.2020.04.015.
    Borghi, A., Cannizzaro, L., & Vitti, A. (2012). Advanced Techniques for Discontinuity Detection in GNSS Coordinate Time-Series. An Italian Case Study. In S. Kenyon, M. C. Pacino, & U. Marti (Eds.), Geodesy for Planet Earth (Vol. 136, pp. 627–634). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-20338-1_77
    Bos, M. S., R. M. S. Fernandes, S. D. P. Williams, and L. Bastos (2013), Fast error
    analysis of continuous GNSS observations with missing data, Journal of Geodesy,
    87(4), 351–360, doi:10.1007/s00190-012-0605-0.
    Carrere L., F. Lyard, M. Cancet, A. Guillot, N. Picot: FES 2014, a new tidal model –Validation results and perspectives for improvements, presentation to ESA Living Planet Conference, Prague 2016.
    Dach, R., Hugentobler, U., Fridez, P., & Meindl, M. (2007). Bernese GPS Software Version
    5.0, Bern, Switzerland: Bern Open Publishing,Astronomical Institute, University of
    Bern.
    Garcia-Fernandez, M., S. D. Desai, M. D. Butala, and A. Komjathy (2013), Evaluation of different approaches to modeling the second-order ionospheric delay on GPS measurements, J. Geophys. Res., 118 (12), 7864-7873, doi:10.1002/2013JA019356.
    Gazeaux, J., Williams, S., King, M., Bos, M., Dach, R., Deo, M., Moore, A. W., Ostini, L., Petrie, E., Roggero, M., Teferle, F. N., Olivares, G., & Webb, F. H. (2013). Detecting offsets in GPS time series: First results from the detection of offsets in GPS experiment: DETECTING OFFSETS IN GPS TIME SERIE. Journal of Geophysical Research: Solid Earth, 118(5), 2397–2407. https://doi.org/10.1002/jgrb.50152
    Ghaderpour, E., Liao, W., & Lamoureux, M. P. (2018). Antileakage least-squares spectral analysis for seismic data regularization and random noise attenuation. GEOPHYSICS, 83(3), V157–V170. https://doi.org/10.1190/geo2017-0284.1
    Ghaderpour, E., & Vujadinovic, T. (2020). Change Detection within Remotely Sensed Satellite Image Time Series via Spectral Analysis. Remote Sensing, 12(23), 4001. https://doi.org/10.3390/rs12234001
    Ghaderpour, E., Liao.(2018) Least-squares wavelet analysis and its applications in geodesy and geophysics.
    Helfin, M., Donnellan, A., Parker, J., Lyzenga, G., Moore, A., Ludwig, L. G., et al. (2020). Automated estimation and tools to extract positions, velocities, breaks, and seasonal terms from daily GNSS measurements: illuminating nonlinear Salton Trough deformation. Earth and Space Science, 7, e2019EA000644. https://doi.org/10.1029/2019EA000644.
    Hosking J. R. M. (1981), Fractional differencing. Biometrika 68(1):165–176
    J. Böhm, J. Kouba, and H. Schuh (2008), Forecast Vienna Mapping Functions 1 for real-time analysis of space geodetic observations, J. Geodesy.
    Kasdin, N. J. (1995). Discrete simulation of colored noise and stochastic processes and 1/f/sup α/ power law noise generation. Proceedings of the IEEE, 83(5), 802–827. https://doi.org/10.1109/5.381848
    Khazraei, S. M., & Amiri-Simkooei, A. R. (2020). Improving offset detection algorithm of GNSS position time-series using spline function theory. Geophysical Journal International, 224(1), 257–270. https://doi.org/10.1093/gji/ggaa453
    Lahtinen, S., Jivall, L., Häkli, P., & Nordman, M. (2022). Updated GNSS velocity solution in the Nordic and Baltic countries with a semi-automatic offset detection method. GPS Solutions, 26(1), 9. https://doi.org/10.1007/s10291-021-01194-z
    Langbein, J., and H. Johnson (1997), Correlated errors in geodetic time series:
    Implications for time-dependent deformation. J. Geophys. Res., 102(B1), 591-603.
    doi: 10.1029/96jb02945
    Lyard F., L. Carrere, M. Cancet, A. Guillot, N. Picot: FES2014, a new finite elements tidal model for global ocean, in preparation, to be submitted to Ocean Dynamics in 2017.
    Mao, A., C. G. A. Harrison, T. H. Dixon (1999), Noise in GPS coordinate time series.
    JGeophys Res 104: 2797–2816
    Montillet, J.-P., Williams, S. D. P., Koulali, A., & McClusky, S. C. (2015). Estimation of offsets in GPS time-series and application to the detection of earthquake deformation in the far-field. Geophysical Journal International, 200(2), 1207–1221. https://doi.org/10.1093/gji/ggu473
    Nikolaidis, R. (2002). Observation of Geodetic and Seismic Deformation with the Global
    Positioning System, Ph.D. dissertation, University of California, San Diego, U. S. A.
    Perfetti, N. (2006). Detection of station coordinate discontinuities within the Italian GPS Fiducial Network. Journal of Geodesy, 80(7), 381–396. https://doi.org/10.1007/s00190-006-0080-6
    Schwarz, G. (1978), Estimating the Dimension of a Model. The Annals of Statistics, 6(2):461–464.
    Vanicek, P., Approximate spectral analysis by least squares fit, Astrophy Space Sci, 4, 387-391 (1969)
    Wang, L., & Herring, T. (2019). Impact of Estimating Position Offsets on the Uncertainties of GNSS Site Velocity Estimates. Journal of Geophysical Research: Solid Earth, 124(12), 13452–13467. https://doi.org/10.1029/2019JB017705
    Williams, S. D. P. (2003). Offsets in Global Positioning System time series: OFFSETS IN GPS TIME SERIES. Journal of Geophysical Research: Solid Earth, 108(B6). https://doi.org/10.1029/2002JB002156
    Williams, S. D. P. (2003), The effect of coloured noise on the uncertainties of rates
    estimated from geodetic time series, Journal of Geodesy, 76(9–10), 483–494,
    doi:10.1007/s00190-002-0283-4
    Zumberge, J. F., M. B. Heflin, D. C. Jefferson, M. M. Watkins, F. H. Webb (1997), Precise point positioning for the efficient and robust analysis of GPS data from large networks, J. Geophys. Res., 102 (B3), 5005-5017, doi:10.1029/96JB03860.
    李宥葭 (2018),台灣GPS時間序列的雜訊分析。國立中央大學地球物理研究所碩士論文,中壢市,共144頁。

    QR CODE
    :::