| 研究生: |
趙蔚倫 Wei-Luen Chao |
|---|---|
| 論文名稱: |
金屬氫化物顆粒床熱傳導係數量測與實驗分析 |
| 指導教授: |
鍾志昂
Chin-Ang Chung |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 134 |
| 中文關鍵詞: | 氫氣 、金屬氫化物 、有效熱傳導係數 |
| 外文關鍵詞: | hydrogen, metal-hydride, effective thermal conductivity |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文為金屬氫化物顆粒床有效熱傳導係數(effective thermal conductivity)量測與實驗分析。實驗反應容器設計為利用一維定常之熱傳方法並採用美國材料試驗協會(American Society for Testing and Materials, ASTM)量測固態材料熱傳導係數實驗設計準則,設計製作儲氫材料反應容器與實驗系統,成功的建立儲氫合金顆粒床(metal hydride granular bed)有效熱傳導係數量測系統。金屬氫化物儲氫容器整體的熱傳特性主要受到儲氫合金顆粒床本身之熱傳導之影響,因此,對儲氫床之整體有效熱傳導係數的掌握,對儲放氫之效率十分重要。由於儲氫床是以合金粉末顆粒之形式存在,熱傳特性包含了合金粒子間之接觸熱傳與粒子間空隙中之氣體影響,所以本研究針對不同供氫壓力探討儲氫床整體之有效熱傳導係數變化。
本實驗對象為LaNi5儲氫合金粉末,根據金屬反應容器在平均溫度約40˚C下實驗結果,隨著供氫壓力之提升整體有效熱傳導係數會有提高之趨勢,並發現當壓力位於PCI曲線α相區時,有效熱傳導係數變化受到氣體壓力的主導,當進入到α+β區時,改由儲氫量主導有效熱傳導係數的變化。根據儲氫量變化與有效熱傳導係數間之關係發現,有效熱傳導係數幾乎隨儲氫量而線性變化。
透過實驗結果顯示,LaNi5儲氫合金粉末,在孔隙率0.58之情況下,實驗操作壓力範圍0.0001 – 18 bar,平均溫度40˚C時,有效熱傳導係數之變化區間界在0.15 – 0.75 W/mK之間。
Heat transfer strongly affects the metal hydride reaction rates. Because metal hydride alloys used in practice are in the form of powders, the granular bed comprises the particles and void spaces between the powders. The effective thermal conductivity of the metal hydride bed therefore determines the heat transfer characteristics of the metal hydride storage vessel. This study aims to measure the effective thermal conductivity under different hydrogen supply pressures.
The experiment reaction vessel was designed based one one-dimensional steady-state axial heat transfer by referring to the guideline of America Society for Testing and Materials (ASTM) for measuring the thermal conductivity of solids by means of the graded-comparative-longitudinal heat flow technique.
A LaNi5 alloy granular bed was measured for the effective thermal conductivity with various hydrogen pressures. Results showed the effective thermal conductivity dramatically increased with increasing hydrogen pressure in the phase of the alloy pressure-concentration-isotherm curve. In the β phase however, the hydrogen contents dominated the change of the effective thermal conductivity. The effective thermal conductivity was almost a linear function of the hydrogen content. The LaNi5 powder bed with the porosity of 0.58 was shown to has the effective thermal conductivity ranging from 0.15 to 0.75 W/mK for hydrogen pressure changing from 0.0001 to 18 bar around 38˚C.
Bevington, P. R. and Robinson, D. K., “Data Reduction and Error Analysis for the Physical Sciences,” pp.39-42, 2003.
Bolandi, H., Tepman, A., “Integrated Bake and Chill Plate,” United States Patent, Patent No.5,983,644, 1999.
Flueckiger, S., Voskuilen, T., Pourpoin, T., Fisher, T. S. and Zheng, Y., “In situ characterization of metal hydride thermal transport properties,” International Journal of Hydrogen Energy, Vol.35, pp.614-621, 2010
Graham, T., “On the Relation of Hydrogen to Palladium,” J. Franklin Inst., Vol.87, pp.256-266, 1869.
Griesinger, A, Spindler, K. and Hahne, E., “Measurement and theoretical modeling of the effective thermal conductivity of zeolites,” International Journal of Heat and Mass Transfer, Vol.42, pp.4363-4374, 1999.
Hahne, E. and Kallweit, J., “Thermal Conductivity of Metal Hydride Materials for Strage of Hydrogen: Experimental Investigation,” International Journal of Hydrogen Energy, Vol.23, No.2, pp.107-114, 1998.
Incropera, F. P., David, P. D., Theodore, L. B., Adrienne, S. L., “Fundamentals of Heat and Mass Transfer, Sixth Edition,” John Wiley & Sons, pp. A-15, A-17, 2007.
Ishido, Y., Kawamura, M. and Ono, S., “Thermal Conductivity of Magnesium-Nickel Hydride Power Beds in a Hydrogen Atmosphere,” International Journal of Hydrogen Energy, Vol.7, No.2, pp.173-182. 1982.
Kempf, A. and Martin, W. R. B., “Measurement of The Thermal Properties of TiFe0.85Mn0.15 and Its Hydrides,” International Journal of Hydrogen Energy, Vol. 11, pp.107-116, 1986.
Krupiczka, R., “Analysis of Thermal Conductivity in Granular Materials,” International Chemical Engineering,;Vol.7, pp.122-144, 1967.
Kumar, E. A., Maiya, M. P. and Murthy, S. S., “Measurement and Analysis of Effictive Thermal Conductivity of MmNi4.5Al0.5 Hydride Bed,” Industrial & Engineering Chemistry Research, 2011.
MacDonald, B. and Rowe, A., “Impacts of external heat transfer enchancements on metal hydride storage tanks,” International Journal of Hydrogen Energy 31 (2006b) 1721-1731, 2006.
Martin, M., Gommel, C., Borkhart, C. and Fromm, E., “Absorption and desorption kinetics of hydrogen storage alloys,” Journal of Alloys and Compounds, Vol.238, pp.193-201, 1996.
Mustafaev, R. A., “Hot-Wire Method in a Nonstationary Variation,” Translated from Inzhenerno-Fizicheskii Zhurnal, Vol.31, No.5, pp.821-825, 1976.
Pebler, A. and Gulbransen, E. A., “Equilibrium Studies on the Systems ZrCr2-H2,
ZrV2-H2 and ZrMo2-H2 Between 0℃ and 900℃,” Trans. Metall. Vol.239, pp.1593, 1967.
Reilly, J. J., Wiswall, R. H., “Formation and Properties of Iron Titanium Hydride,”
Inorganic Chemistry, Vol.13, pp.218, 1974.
Reilly, J. J., Wiswall, R. H., “The Reaction of Hydrogen with Alloys of Magnesium and Nickel and the Formation of Mg2NiH4,” Inorganic Chemistry, Vol.7, pp.2254, 1968.
Sandrock, G., “A panoramic overview of hydrogen storage alloys from a gas reaction point of view,” Journal of Alloys and Compounds, Vol.293-295, pp.877-888, 1999.
Sieverts, A., “The Absorption of Gases by Metals,” Zeitschrift für Metallkunde, Vol.21, pp.37-36, 1929.
Stadard Test Method for Thermal Conductivity of Solids by Means of the Graded-Comparative-Longitudinal Heat Flow Technique. ASTM E1225-09, ASTM International: West Conshohocken, PA, DOI:10.1520/E1225-09, 2009.
Standard Specification for Copper Sheet, Strip, Plate, and Rolled Bar, ASTM B152/B152M-13, ASTM International: West Conshohocken, PA, DOI:10.1520/B0152_B0152M-13, 2009.
Steven, C. C., “Applied Numerical Methods with MATLAB for Engineers and Scientists, Second Edition,” McGraw-Hill, pp. 454-455, 2008.
Suda, S., Kobatashi, N., Yoshida, K., “Thermal Conductivity in Metal Hydride Beds,” International Association for Hydrogen Energy, Vol.6, No.5, pp.521-528, 1981.
Suda, S., Kobatashi, N., Yoshida, K., Ishido, Y., Ono, S., “Experimental Measurements of Thermal Conductivity,” Journal of Less-Common Metals, Vol.74, pp.127-136, 1980.
Suissa, E., Jacob, I., Hadari, Z., “Experimental measurement and general conclusions on the effective thermal conductivity of powdered metal htdrides,” Journal of Less-Common Metal, Vol.104, pp.287-295, 1984.
Sun, D. W. and Deng, S. J., “Theoretical Model Predicting the Effective Thermal Conductivity in Powder Metal Hydride Beds,” Vol.15, No.5, pp.331-336, 1990.
Vucht, J. H. N., Kuijpers, F. A., Bruning, H. C. A. M., “Reversible Room-Temperature
Absorption of Large Quantities of Hydrogen by Intermetallic Compounds,” Philips Res. Repts., Vol.25, p.133, 1970.
Wakashima, H. and Teraoka, S., “Thermal Conductivity of Powder,” Kanazawa Intitute of Technology, Kanazawa, 1976.
Wang, C. Y., Tien, H. C., Chyou, S. D., Huang, N. N. and Wang, S. H., “Hydrogen absorption/desorption in a metal hydride reactor accounting for varied effective thermal conductivity,” Journal of Marine Science and Technology, Vol.19, No.2, pp.168-175, 2011.
White, F. M., “Viscous Fluid Flow, Third Edition,” McGraw-Hill International Edition, International Journal of Hydrogen Energy, pp.46, 2006.
Züttel, A., “Materials for hydrogen storage,” Materials Today, Vol.6, pp.24-33, 2003.
CNS汽車用螺紋緊固件緊固扭矩,國家技術工業局標準,編號QC/T 518-1999。
CNS壓力容器安全檢查構造標準,行政院勞工委員會,勞安2字第0970146112號(民97年11月7日)。
大西清(原著),洪榮哲、黃廷合(編譯),機械設計製圖便覽(修訂版),第四章15頁;第十四章 11頁,台北縣,台灣,全華圖書,2009。
曲新生、陳發林,氫能技術,第27-31頁,台北市,台灣,五南書局,2006。
李方正,新能源,第22-23頁,台北縣,台灣,新文京開發出版社,2009。
李建國,壓力容器設計的力學基礎及其標準應用,第11頁,北京市,中國,機械工業出版社,2004。
胡子龍,儲氫材料,第20-23;45-46;51;83;94-95;118-119;135-136;147-148;161頁,台北市,台灣,曉園出版社,2006。
張靖周、常海萍,傳熱學,第159-160頁,北京,科學出版社,2009。
許震遠,壓力容器與管路構件之強度計算,復漢出版社,第97頁,1975。
楊書文,金屬儲氫罐熱傳增強設計與實驗分析,碩士論文,國立中央大學機械工程學系,桃園縣,台灣,2011。
機械工程手冊/電機工程手冊編輯委員會,機械工程手冊2-鋼材料,第14章 4-251頁,2002。