跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林冠宇
Kuan-yu Lin
論文名稱: 變頻相位編碼於視覺誘發電位之大腦人機介面設計
Visual Evoked Potential of BCI System based on Frequency-Modulated with Multi-Phase coding
指導教授: 徐國鎧
Kuo-kai Shyu
口試委員:
學位類別: 博士
Doctor
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 105
中文關鍵詞: 大腦人機介面穩態視覺誘發電位Chirp視覺誘發電位分數傅立葉轉換分數卷積
外文關鍵詞: Brain-Computer Interface(BCI), Chirp Visual Evoked Potential (Chirp-VEP), Fractional Fouier transform (FrFT), Fractional Convolution
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有別於穩態視覺誘發電位以定頻弦波為大腦人機介面的誘發訊號,Chirp視覺誘發電位以chirp訊號作選項閃光依據,本論文利用chirp訊號的頻率會隨時間線性變化的特性以及各選項閃爍時間與休息時間的交錯,設計變頻相位編碼的大腦人機介面。
    Chirp視覺誘發電位使用的分析方法為分數傅立葉轉換,為了讓轉換公式在實現上更加有效率,本論文使用快速傅立葉轉換來實現分數傅立葉轉換以簡化實現的複雜度。
    為了使視覺誘發電位的數位濾波器不需因為chirp訊號的變頻特性而使用過寬的通帶,本論文提出一方法來實現可線性調變通帶的帶通濾波器,其核心是使用分數卷積,達成在不同時間有不同通帶的數位濾波器並且能與chirp訊號的瞬時頻率匹配,此方法能提高系統的訊號雜訊比,進而提高大腦人機介面的辨識正確率。


    This study implements a brain computer interface which is based on Chirp visual evoked potential. Because Chirp-VEP is not a sinusoid but a chirp signal, the phase-shift coding approach in this study would let each command has various instantaneous frequency at any time.
    Fractional Fouier Transform can analyze the characteristic of linear frequency modulation, but its computation takes a lot of time. A mothed in this study implements FrFT via FFT so that the complexity can be reduced.
    Unlike the unsuitable passband on a normal band-pass filter, the frequency-modulated passband can match the frequency of Chirp-VEP with time. It means that the filter completed by Fractional Convolution in this study has higher Signal-to-Noise Ratio than traditional filter. The experiment results demonstrate that the Chirp-VEP induced by the proposed method do have great accuracy and can be used in the BCI system.

    摘要 i Abstract ii 謝誌 iii 目錄 iv 圖目錄 vi 表目錄 x 第一章 緒論 1 1-1 前言 1 1-2 研究目的與方法 1 1-3 論文架構 2 第二章 變頻相位編碼之大腦人機介面 3 2-1 視覺誘發電位之大腦人機介面 3 2-2 暫態視覺誘發電位、穩態視覺誘發電位 5 2-3 Chirp視覺誘發電位 6 2-4 Chirp訊號數位化實現 9 2-5 Chirp訊號之相位調變 19 第三章 分數傅立葉轉換 24 3-1 分數傅立葉轉換定義 24 3-2 Chirp訊號之分數傅立葉轉換 27 3-3 分數傅立葉轉換相關特性 28 3-4 分數傅立葉轉換與傅立葉轉換的關係 32 第四章 分數卷積 36 4-1 分數卷積定義 36 4-2 分數卷積的分數傅立葉轉 38 4-3 分數卷積之無限脈衝響應濾波器 42 第五章 實驗結果 49 5-1 刺激訊號數位化之分析 49 5-2 分數傅立葉轉換快速演算法之分析 53 5-3 Chirp視覺誘發電位非即時分析 55 5-4 Chirp視覺誘發電位即時之比較與分析 80 第六章 結論與未來展望 83 參考文獻 85

    [1] G. Schalk, D.J. McFarland, T. Hinterberger, N. Birbaumer, and J. R. Wolpaw, “BCI2000: A General-Purpose Brain-Computer Interface (BCI) System”, IEEE Transactions on Biomedical Engineering, Vol. 51,pp. 1034-1043, No. 6, June 2004.
    [2] L. J. Trejo, R. Rosipal, and B. Matthews, “Brain–Computer Interfaces for 1-D and 2-D Cursor: Designs Using Volitional Control of the EEGSpectrum or Steady-State Visual Evoked Potentials”, IEEE Transactions on Neural System and Rehabilitation Engineering, Vol. 14, No. 2, pp. 225-229,June 2006.
    [3] M. Cheng, X. R. Gao, S. K. Gao, and D. F. Xu,“Design and Implementation of a Brain-Computer Interface with High Transfer Rates”, IEEE Transactions on Biomedical Engineering, Vol. 49, No. 10, pp. 1181-1186, Oct. 2002.
    [4] R. C. Panicker, S. Puthusserypady, and Y. Sun, “An Asynchronous P300 BCI with SSVEP-Based Control State Detection”, IEEE Transactions on Biomedical Engineering, Vol. 58, No. 6, pp. 1781-1788, June 2011.
    [5] P. L. Lee, J. J. Sie, Y. J. Liu, C. H. Wu, M. H. Lee, C. H. Shu, P. H. Li, C. W. Sun, and K. K. Shyu, “An SSVEP-Actuated Brain Computer Interface Using Phase-Tagged Flickering Sequences: A Cursor System”, Annals of Biomedical Engineering, Vol. 38, No. 7, pp. 2383-2397, July 2010.
    [6] H. Cecotti and A. Gräser, “Convolutional Neural Networks for P300 Detection with Application to Brain-Computer Interfaces”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 33, No. 3, Mar. 2011.
    [7] J. V. Odom, M. Bach, M. Brigell, G. E. Holder, D. L. McCulloch, A. P. Tormene, Vaegan, “ISCEV Standard for Clinical Visual Evoked Potentials(2009 update)”, Doc. Ophthalmol., 120, pp. 111-119, 2010.
    [8] E. E. Sutter, “The Brain Response Interface: Communication through Visually-Induced Electrical Brain Response”, Journal of Microcomputer Application, Vol. 15, pp. 31-45, Jan. 1992.
    [9] R.Sivakumar, “Analysis of Transient Visual Evoked Potential at Different Rate of Stimulation, ” 2009 Second Int. Conf. Comp. Elec. Eng.
    [10] S. M. Lai, Z. Zhang, Y. S. Hung, Z. Niu, and C. Chang, “A Chromatic Transient Visual Evoked Potential Based Encoding / Decoding Approach for Brain–Computer Interface, ” IEEE J. Emerg. Select. Top. Circuits Syst., Vol. 1, No. 4, Dec. 2011.
    [11] L. M. ai, Z. F. kun and Y. J. fu, “The Feature Extraction and Recognition of Transient Visual Evoked Potential Based on Wavelet Transform,” Biomed. Eng. Comp. Sci. (ICBECS), 2010 Int. Conf.
    [12] M. Cheng, X. Gao, S. Gao and D. Xu, “Design and Implementation of a Brain-Computer Interface With High Transfer Rates, ” IEEE Trans. Biomed. Eng., VOL. 49, NO. 10, Oct. 2002.
    [13] P. L. Lee, C. H. Wu, J. C. Hsieh, and Y. T. Wu,“Visual Evoked Potential Actuated Brain Computer Interface: A Brain-Actuated Cursor System”, Electronics Letters, Vol. 4, No. 15, July 2005.
    [14] 謝竣傑,「多頻相位編碼之閃光視覺誘發電位驅動大腦人機介面」,國立中央大學電機工程學系,碩士論文,民國九十六年七月。
    [15] E. C. Lalor, S. P. Kelly, C. Finucane, R. Burke, R. Smith, R. B. Reilly, and G. McDarby, “Steady-State VEP-Based Brain-Computer Interface Control in an Immersive 3D Gaming Environment”, EURASIP Journal on Applied Signal Processing, 19, pp. 3156-3164, 2005.
    [16] Y. Wang, R. Wang, X. R. Gao, B. Hong and S. K. Gao, “A Practical VEP-Based Brain-Computer Interface”, IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 14, No. 2, pp. 234-239, June 2006.
    [17] T. Tu, Y. Xin, X. Gao and S. Gao, “Chirp-modulated visual evoked potential as a generalization of steady state visual evoked potential,” IOP Publishing J. Neural Eng. 9 (2012) 016008 (11pp)
    [18] M. Cheng, X. Gao, S. Gao, and D. Xu, “Design and Implementation of a Brain-Computer Interface With High Transfer Rates,” IEEE Trans. Biomed. Eng., Vol. 49, No. 10, Oct. 2002.
    [19] 彭韶驊,「Chirp視覺誘發電位為基礎之大腦人機介面-FPGA實現」,國立中央大學電機工程學系,碩士論文,民國一○二年六月。
    [20] A. I. Zaye, “On the relationship Between the Fourier Transforms and Fractional Fourier Transforms,” IEEE Signal Processing Letter, Vol. 3, No. 12, Dec. 1996.
    [21] A. I. Zaye, “A convolution and product theorem for the fractional Fourier,” IEEE Signal Processing Letter, Vol. 5, No. 4, Apr. 1998.
    [22] R. Torres, P. Pellat-Finet, Y. Torres, “Fractional convolution, fractional correlation and their translation invariance properties,” Elsevier Signal Processing, Vol. 90, pp. 1976-1984, 2010.
    [23] D. Regan, “Human brain electrophysiology : evoked potentials and evoked magnetic fields in science and medicine,” Electroencephalography and Clinical Neurophysiology, July 1989.
    [24] K. Singh, N. Singh, P. Kaur, R. Saxena, “Image Compression By Using Fractional Transforms,” 2009 International Conference on Advances in Recent Technologies in Communication and Computing, 2009.
    [25] R. Kumar, K. Singh, R. Khanna, “Satellite Image Compression using Fractional Fourier Transform,” International Journal of Computer Applications, Vol. 50, No.3, July 2012.
    [26] S. A. Elgamel, C. Clemente, J. J. Soraghan, “Radar Matched Filtering using the Fractional Fourier Transform,” Sensor Signal Processing for Defence (SSPD 2010), Sep. 2010.
    [27] I. Djurovic, S. Stankovic, I. Pitas, “Digital watermarking in the fractional Fourier transformation domain,” Journal of Network and Computer Applications, Vol. 24, pp. 167-173, 2001.
    [28] S. Liu, L. Yu, B. Zhu, “Optical image encryption by cascaded fractional Fourier transforms with random phase filtering,” Elsevier Optics Communications, Vol. 187, pp. 57-63, 2001.
    [29] P. H. Chou, H. T. Chang, “Optical image encryption system based on dyadic phase displacement, toral automorphism, and fractional Fourier transform,” International Conference on Optics and Photonics in Taiwan, Taipei, Taiwan, Dec. 2008.

    QR CODE
    :::