| 研究生: |
劉許驊 Hsu-Hua Liu |
|---|---|
| 論文名稱: |
應用於具有擴展頻譜串列資料之每秒30億位元全速率資料回復電路 Design and Implementation of 3 Gbps Full-Rate Data Recovery Circuit for Serial Link Data Transmission with Spread-Spectrum Clocking |
| 指導教授: |
鄭國興
Kuo-hsing Cheng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 延遲鎖定迴路 、資料回復電路 、時脈與資料回復電路 |
| 外文關鍵詞: | Delay-locked loop, Clock and data recovery, Data recovery |
| 相關次數: | 點閱:5 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著資料傳輸速率需求的增加,對於輸入與輸出的頻寬限制也與日俱增,因此高速串列傳輸系統逐漸取代傳統的並列傳輸方式,例如應用在乙太網路及光纖網路上的OC-192,與著重於有線或是匯流排上的應用有PCI-E、SATA…等系統,在這些規格所傳輸的速率已達到 Gbps的等級。本論文之設計主要針對串列有線傳輸系統中的SATA接收端規格為設計藍圖,採用雙迴路的方式實現,基本架構為延遲鎖定迴路,並加上頻率偏移校正迴路解決頻率偏移的問題,利用全速率取樣方式實現資料回復電路。
本論文實現應用於3 Gbps的串列傳輸系統中之資料回復電路。此系統中具有延遲鎖定迴路與頻率偏移校正迴路之雙迴路設計。延遲鎖定迴路用來做資料與時脈間的相位追鎖,但由於延遲鎖定迴路本身並無頻率追鎖的能力,所以當資料與時脈間存在頻率偏移時可能因此造成系統的不穩定,故加上頻率偏移校正迴路在資料與時脈間產生頻率偏移時,提供額外的相位補償給延遲鎖定迴路,最後延遲鎖定迴路校準時脈到達最佳取樣位置。
本論文之全速率資料回復電路使用TSMC 90 nm 1P9M CMOS製程實現晶片,其輸入資料為3 Gbps差動訊號,操作時脈為四相位3 GHz訊號。整體晶片面積為534 um ? 556 um,核心電路的面積為325 um ? 278 um。電路在操作電壓為1.2V時,功率消耗為23.8mW。
As the increase of the demands for the high speed data rate, the input-output bandwidth will progress with each passing day. Therefore, the high speed serial transmission systems have replaced traditional parallel transmission systems gradually. For example, OC-192 is applied in Gigabit Ethernet and Fiber channel. PCI-E and SATA are use in wire or bus serial links. Most of the system operates at the data rate attending to the level of Gbps. For the design of the SATA receiver circuit system, the study introduces the dual-loop-based data recovery circuit architecture, and develops the circuit on the full-rate sampling data technique. The architecture consists of a delay-locked loop (DLL) and a frequency offset calibration loop. Thus, based on the calibration loop, the issue of the frequency offset can be eliminated.
The data recovery circuit architecture is implemented for the application to the 3 Gbps serial link system. The data recovery architecture is composed of DLL and the frequency offset calibration loop. Traditionally, due to the only phase tracking capability for DLL, use DLL to track the phase difference between clock and data may cause the frequency offset problem. It means that, when the frequency difference exists between the clock and data, the DLL can not lock in phase and yields the unstable system. Accordingly, the use of the frequency offset calibration loop can compensate the phase in tracking data. Finally, as the DLL adjusts the delay clock phase, the data is recovered in success.
This study implements the full-rate data recovery circuit in TSMC 90 nm 1P9M CMOS process. The input signal is the 3 Gbps differential data, and the input clock is 3 GHz with the 4 phase signal. The chip area is 534 um ? 556 um and the core area is 325 um ? 278 um. The power consumption is 30 mW at supply of 1.2V.
[1] PCI-SIG “PCI Express® Base Specification,” Revision 2.1, June. 2010.
[2] Serial ATA Workgroup “SATA: High speed Serialized AT Attachment,” Revision 3.0, Feb. 2009.
[3] Agilent Technologies “Jitter Fundamental & Measurement Technology,”.
[4] M. Aoyama, K. Ogasawara, M. Sugawara, et al. “3 Gbps, 5000 ppm spread spectrum SerDes PHY with frequency tracking phase interpolator for Serial ATA,” IEEE Symp. on VLSl Circuits Digest of Technical Papers, pp. 107-110, Jun. 2003.
[5] M-T. Hsieh, G. E. Sobelman, “Architectures for Multi-Gigabit Wire-Linked Clock and Data Recovery”. IEEE Circuits and Systems Magazine, vol. 8, no. 4, pp:45-57, Dec. 2008.
[6] Understanding Jitter. WAVECREST Corporation, 2001.
[7] Agilent Technologies, Measuring Jitter in Digital Systems. Application Note 1448-1.
[8] J. Savoj and B. Razavi, “A 10-Gb/s CMOS clock and data recovery circuit with a half-rate linear phase detector,” IEEE J. Solid-State Circuits, vol. 36, no. 5, pp. 761-767, May. 2001.
[9] B. Razavi, Design of Integrated Circuit for Optical Communications. New York: McGraw-Hill , 2003.
[10] T. H. Lee and J. F. Bulzacchelli, “A 155-MHz clock recovery delay- and phase-locked loop,” IEEE J. Solid-State Circuits, vol. 27, no. 12, pp. 1736-1746, Dec. 1992.
[11] X. Maillard, F. Devisch, and M. Kuijk, “A 900-Mb/s CMOS data recovery DLL using half-frequency clock,” IEEE J. Solid-State Circuits, vol. 37, no. 6, pp. 711-715, Jun. 2002.
[12] J. Kim and D.-K. Jeong, “Multi-gigabit-rate clock and data recovery based on blind oversapmling,” IEEE Communications Magazine, vol. 41, pp. 68-74, Dec. 2003.
[13] M. Banu and A. Dunlop, “A 660Mb/s CMOS clock recovery circuit with instantaneous locking for NRZ data and burst-mode transmission,” in Proc. IEEE Int. Solid-State Circuits Conf., Feb. 1993, pp. 102-103.
[14] P. Larsson, “A 2-1600 MHz CMOS clock recovery PLL with low-Vdd capability,” IEEE J. Solid-State Circuits, vol. 34, no. 12, pp. 1951-1960, Dec. 1999.
[15] M. Nogawa, K. Nishimura, S. Kimura, and T. Yoshida, et al. “A 10-Gb/s burst-mode CDR IC in 0.13μm CMOS,” in Proc. IEEE Int. Solid-State Circuits Conf., vol. 1, Feb. 2005, pp. 228-229.
[16] R. E. Best, Phase-Locked Loops: Design, Simulation, and Applications. New York: McGraw-Hill, 1999.
[17] B. Razavi, “A study of phase noise in CMOS oscillators,” IEEE J. Solid-State Circuit, vol. 31, no. 3, pp. 331-343, Mar. 1996.
[18] C.–H. Park and B. Kim, ”A low-noise, 900MHz VCO in 0.6μm CMOS,” IEEE J. of Solid-State Circuits, vol. 34, no. 5, pp. 586-591, May 1999.
[19] S.–J, Lee. B, Kim, and K. Lee, ”A novel high-speed ring oscillator for multiphase clock generation using negative skewed delay scheme,” IEEE J. Solid-State Circuits, vol. 32, no. 2, pp. 289-291, Feb.1997.
[20] M. M. Green and U. Singh, “Design of CMOS CML circuits for high-speed broadband communications,” in Proc. IEEE Int. Symp. Circuits and System, vol. 2, May 2003, pp. 204-207.
[21] J. Lee, K. S. Kundert, and B. Razavi, “Modeling of jitter in bang-bang clock and data recovery circuits,” in Proc. IEEE Custom Integrated Circuits Conf., pp. 711–714, Sep. 2003.
[22] J. Lee, K. S. Kundert, and B. Razavi, “Analisis and modeling of bang-bang clock and data recovery circuits,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1571-1580, Sep. 2004.
[23] G. M. Yin, F. O. Eynde, and W. Sansen, “A high-speed CMOS comparator with 8-b resolution,” IEEE J. Solid-State Circuits, vol. 27, no. 2, pp. 208-211, Feb. 1992.
[24] S. Sidiropoulos and M. A. Horowitz, “A semidigital dual delay-locked loop,” IEEE J. Solid-State Circuits, vol. 32, no. 11, pp. 1683-1692, Nov. 1997.
[25] M. M. Green, “CMOS design techniques for 10 Gb/s optical transceivers,” IEEE Symp. on VLSl Circuits, pp. 209-212, May 2003.
[26] R. Kreienkamp, U. Langmann, and C. Zimmermann, et al. “A 10-Gb/s CMOS clock and data recovery circuit with an analog phase interpolator,” IEEE J. Solid-State Circuits, vol. 40, no. 3, pp. 736-743, Mar. 2005.
[27] M. Y. He and J. Poulton, “A CMOS mixed-signal clock and data recovery circuit for OIF CEI-6G+ backplane transceiver,” IEEE J. Solid-State Circuits, vol. 41, no. 3, pp. 597-606, Mar. 2006.
[28] P. K. Hanumol, G. Y. Wei, and U. K. Moon, “A wide-tracking range clock and data recovery circuit,” IEEE J. Solid-State Circuits, vol. 43, no. 2, pp. 425-439, Feb. 2008.
[29] Y.-S. Seo, J.-W. Lee, H.-J.g Kim, C. Yoo, J.-J. Lee, and C.-S. Jeong, “A 5-Gbit/s clock and data recovery circuit with 1/8-rate linear phase detector in 0.18μm CMOS technology,” IEEE Trans. on Circuits and Systems II, vol. 56, pp. 6-10, Jan. 2009.
[30] Anritsu “Ultra-Wideband Bias Tees Models K251 and V251,” Revision A, Jun. 2000.
[31] Y. Lee, N.-C, Cheng, J.-J. Chen. “BER Test Strategies for High Performance Communication Systems” Soc Technical Journal, Vol. 7, pp.95-107.