| 研究生: |
洪榮洲 Jung-Chou Hung |
|---|---|
| 論文名稱: |
微放電複合製程之微型工具製作技術及其精微加工研究 A study on micro-tools fabrication in micro-EDM hybrid process for micro-machining |
| 指導教授: |
顏炳華
Biing-Hwa Yan |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 142 |
| 中文關鍵詞: | 複合電鍍 、超音波振動 、微放電加工 、微型工具 、複合製程 、微孔 、微模穴 |
| 外文關鍵詞: | co-deposition, ultrasonic vibration, micro-EDM, hybrid process, micro-tool, micro-hole, micro-cavity |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微放電加工法是以高精度、微加工量、微小且穩定能量,加工微小且形狀複雜或具有特殊機械性質之難加工導電材料的一種有效方法。但微放電加工後,由於工具電極的消耗會使加工後之微結構形成錐度狀,且加工表面會形成再凝固層、微裂痕與放電坑,造成形狀精度不佳。再加上無法以一般傳統研磨加工法對微結構進行精修加工,因此本研究提出新式微放電複合製程精修加工技術,並發展出製作圓柱狀與圓球型等微型工具成形技術,可有效應用於精微模具加工而使模具達到高精度與高品質的表面形狀精度,以符合工業所需。
本研究提出兩種複合製程技術,分別為微工具搭配超音波振動游離磨粒之研磨技術,以及複合電鍍嵌入式磨粒後的微工具成形技術並探討其精微加工特性。首先針對微放電後之微圓孔與方形微孔進行研磨精修加工。實驗結果顯示,採用螺旋電極研磨法或微型圓柱狀研磨工具加工法,微細圓孔孔壁表面均可獲得顯著的精修效果;螺旋電極搭配超音波振動研磨法加工約25分鐘後,表面粗糙度值由研磨前之Rmax 1.35 μm降低至0.58 μm,而採用複合電鍍鎳-碳化矽後的微型圓柱狀工具加工時,表面粗糙度值可由研磨前之Rmax 1.47μm降低至0.46 μm。針對方形微孔而言,採用方柱狀工具搭配超音波振動研磨法,當加工45分鐘後表面粗度值Rmax可由0.96 μm降至0.31 μm。另外,對於微型球面模穴加工則是利用電極末端放電形成微球後,經複合電鍍鎳-鑽石後之微球型工具進行加工測試,可加工出一球面模穴,若搭配游離磨粒加工時,更可獲得Rmax 0.35 μm的微模穴表面。
The micro-EDM can be used to machine complex shape conductive hard-to-machine materials with high precision, less material remove rate, micro stable energy. However, micro-EDM will cause recast layer, discharge craters and micro-cracks on the machined surface with poor surface quality. This affects the precision of diameter and the geometric shape. Moreover, the electrode wear not only will the dimension of the machined structure be changed, but also its shape is severely distorted. Unfortunately, the conventional grinding is difficult to refine the machined shape accuracy by inserting the tool into the micro-hole. To overcome these issues, novel hybrid processes combined with micro-EDM were applied to effectively machine a micro-structure with high accuracy and quality surface.
This study describes two hybrid processes that are micro-tool with ultrasonic vibration free abrasive grinding method and co-deposited micro-tool with grinding method. The circular and square micro-holes are investigated in this study. Experimental results show that the surface roughness of the micro-hole inner-wall can be well refined without micro-cracks and micro-craters by each of the proposed methods. For the circular micro-hole, using a helical micro-tool with ultrasonic vibration grinding method takes only 25 minutes to improve the machined surface from 1.35 to 0.58 µm Rmax, while using a co-deposited micro-tool grinding method can improve the machined surface roughness from 1.47 to 0.46 µm Rmax. By using a square micro-tool with ultrasonic vibration grinding method, the surface roughness of the square micro-hole inner-wall can be improved from 0.96 to 0.31 µm Rmax. Moreover, after EDM spherical forming, a micro-spherical tool is made by Ni-diamond co-deposition. A smooth surface of micro-spherical cavity can be gained using the micro-spherical diamond tool and better one has surface roughness 0.35 μm Rmax can be finished by combining with free abrasive grinding.
1. 陳仲宜,精微模具應用現況分析,2007金屬工業研究發展中心產業評析報告。
2. S. S. Choi, M. Y. Jung, D. W. Kim, M. A. Yakshin, J. Y. Park, Y. Kuk, Frabrication and microelectron gun arrays using laser micromachining, 1998 Microelectronic Engineering 41/42 167-170.
3. A. C. Wang, B. H. Yan, X. T. Li, F. Y. Huang, Use of micro ultrasonic vibration lapping to enhance the precision of microholes drilled by micro electro-discharge machining, 2002 International Journal of Machine Tools and Manufacture 42 915-923.
4. H. Huang, H. Zhang, L. Zhou, H. Y. Zheng, Ultrasonic vibration assisted electro-discharge machining of microholes in Nitinol, 2003 Journal of Micromechanics and Microengineering 13 693-700.
5. W. Ehrfeld, H. Lehr, Deep X-Ray Lithography for the production of three-dimensional microstructures from metals, polymers and ceramics, 1995 Radiation physics and chemistry 45 3 349-365.
6. R. K. Kupka, F. Bouamrance, C. Cremers, S. Megtert, Microfabrication: LIGA-X and applications, 2000 Applied Surface Science 164 1-4 97-110.
7. H. S. Liu, B. H. Yan, C. L. Chen, F. Y. Huang, Application of micro-EDM combined with high-frequency dither grinding to micro-hole machining, 2006 International Journal of Machine Tools & Manufacture 46 80-87.
8. B. H. Kim, S. H. Ryu, D. K. Choi and C. N. Chu, Micro electrochemical milling, 2005 Journal of Micromechanics and Microengineering 15 124-129.
9. K. H. Hou, M. D. Ger, L. M. Wang and S. T. Ke, The wear behaviour of electro-codeposited Ni–SiC composites, 2002 Wear 253 994-1003.
10. T. Masuzawa, M. Fujino, K. Kobayashi and T. Suzuki, Wire Electro-Discharge Grinding for Micro-Machining, 1985 Annals of the CIRP, 34 (1) 431-434.
11. K. Kagaya, Y. Oishi, K. Yada, Micro-electro discharge machining Using Water as a working Fluid-I: 1986 Micro-hole Drilling, Precision Engineering, 8 (3) 156-162.
12. M. Kunieda, T. Masuzawa, A fundamental study on a horizontal EDM, 1988 Annals of the CIRP 37 (1) 187–190.
13. T. Masuzawa, J. Tsukamoto and M. Fujino, Drilling of Deep Microholes by EDM, 1989 Annals of the CIRP, 38 (1) 195-198.
14. K. P. Rajurkar, G. F. Royo, Improvement in EDM performance by R.F. control and orbital motion, 1989 American Society of Mechanical Engineers 34 51-62.
15. T. Masuzawa, M. Yamamoto and M. Fujino, A Micropunching System Using Wire-EDM, 1989 Proc. of Int’l Symposium for Electromachining (ISEM-9) 86-89.
16. K. Kagaya, Y. Oishi, K. Yada, Micro-electrodischarge machining Using Water as a working Fluid-2: Narrow Slit Fabrication, 1990 Precision Engineering, 12 (4) 213-217.
17. T. Masaki, K. Kawata and T. Masuzawa, Micro Electo-Discharge Machining and Its Application, 1990 Proc. of MEMS ‘90 IEEE 21-26.
18. C. L. Kuo, T. Masuzawa, M. Fujino, A micro-pipe fabrication process, 1991 Proc. Of MEMS ’91 IEEE 80-85.
19. C. L. Kuo, T. Masuzawa, M. Fujino, High Precision Micronozzle Fabrication Process, 1992 Proc. Of MEMS ’92 IEEE 116-121.
20. T. Masuzawa, C. L. Kuo, M. Fujino, A combined electrical machining process for micronozzle fabrication, 1994 Annals of the CIRP 43 (1) 189-192.
21. H. H. Langen, T. Masuzawa, M. Fujino, Modular method for microparts machining and assembly with self-alignment, 1995 Annals of the CIRP 44 173-176.
22. D. M. Allen, A. Lecheheb, Micro electro-discharge machining of ink jet nozzles: optimum selection of material and machining parameters, 1996 Journal of Material Processing Technology 58 53-66.
23. X.-Q. Sun, T. Masuzawa, M. Fjino, Micro ultrasonic machining and its applications in MEMS, 1996 Sensors and actuators A 57 159-164.
24. D. Reynaerts, P. H. Heeren, H. V. Brussel, Microstructuring of silicon by electro-discharge machining (EDM) – part I: theory, 1997 Sensors and Actuators A, 60 212-218.
25. P. H. Heeren, D. Reynaerts, H. V. Brussel, Three-dimensional silicon micromechanical parts manufactured by electro-discharge machining, 1997 Proceeding of MEMS ’97 IEEE 247-252.
26. Z. Y. Yu, T. Masuzawa, M. Fujino, Micro-EDM for three dimensional cavities – Development of uniform wear method , 1998 Annals of the CIRP 47 (1) 169-172.
27. B. H. Yan, F. Y. Huang, H. M. Chow, J. Y. Tasi, Micro-hole machining of carbide by electrical discharge machining, 1999 Journal of Material Processing Technology 87 139-145.
28. K. Egashira, T. Masuzawa, Microultrasonic Machining by the Application of Workpiece Vibration, 1999 Annals of the CIRP 48 (1) 131-134.
29. K. Takahata, N. Shibaike, H. Guckel, A novel micro electro-discharge machining method using electrodes fabricated by the LIGA process, 1999 Proceeding of MEMS ’99 IEEE 238-243.
30. N. Mohri, H. Takezawa, K. Furutani, Y. Ito, T. Sata, A new process of additive and removal Machining by EDM with a thin electrode, 2000 Annals of the CIRP 49 (1) 123-126.
31. K. P. Rajurkar, Z. Y. Yu, 3D micro-EDM using CAD/CAM, 2000 Annals of the CIRP 49 (1)127-130.
32. M. G. Her, F. T. Weng, Micro-hole machining of copper using the electro-discharge machining process with a tungsten carbide electrode compared with a copper electrode, 2001 International Journal of Advanced Manufacturing Technology 17 715-719.
33. S. H. Yeo, G. G. Yap, A feasibility study on the micro electro-discharge machining process for photomask fabrication, 2001 International Journal of Advanced Manufacturing Technology 18 7-11.
34. K. Takahata, Y. B. Gianchandani, Batch mode micro-EDM for high-density and high-throughput micromachining, 2001 Proceeding of MEMS ’01 IEEE 72-75.
35. K. Takahata, Y. B. Gianchandani, Batch mode Micro Electro Discharge machining, 2002 Journal of micro electro mechanical systems 11 (2) 102-110.
36. Y. Li, M. Guo, Z. Zhou, M. Hu, Micro electro discharge machine with an inchworm type of micro feed mechanism, 2002 Precision Engineering 26 7-14.
37. Z. Y. Yu, K. P. Rajurkar, H. Shen, High aspect ratio and complex shaped blind micro holes by micro EDM, 2002 Annals of the CIRP 51 (1) 359-362.
38. K. Egashira, K. Mizutani, Micro-drilling of monocrystalline silicon using a cutting tool, 2002 Precision Engineering 26 263-268.
39. F. T. Weng, M. H. Her, Study of the batch production of micro parts using the EDM process, 2002 International Journal of Advanced Manufacturing Technology 19 266-270.
40. T. Mori, K. Hirota, S. Kurimoto, Y. Nakano, Die making of ultra-fine piercing by electric discharge machining, 2002 International symposium on micromechatronics and human science 61-66.
41. 黃玉龍、郭佳儱,微放電加工製作微圓盤刀具進行銑削和研削微溝槽之研究,2002第十九屆機械工程研討會第四冊製造與材料(下) 747-754。
42. P. C. Kaminski and M. N. Capuano, Micro hole machining by conventional penetration electrical discharge machine, 2003 International Journal of Machine Tools & Manufacture 43 1143–1149.
43. I. Beltrami, C. Joseph, R. Clavel, J. P. Bacher and S. Bottinelli, Micro- and nanoelectric-discharge machining, Journal of Materials, 2004 Processing Technology 149 263-265.
44. Y. Imai, T. Nakagawa, H. Miyake, H. Hidai and H. Tokura, Local actuator module for highly accurate micro-EDM, 2004 Journal of Materials Processing Technology 149 328-333.
45. D. Y. Sheu, Micro-spherical probes machining by EDM, 2005 Journal of Micromechanics and Microengineering 15 185-189.
46. H. Fuzhu, Y. Yuji, K. Taichi and K. Masanori, Experimental attempts of sub-micrometer order size machining using micro-EDM, 2006 Precision Engineering 30 123-131.
47. H. Nakaoku, T. Masuzawa and M. Fujino, Micro-EDM of sintered diamond, 2007 Journal of Materials Processing Technology 187-188 274-278.
48. D. K. Chung, B. H. Kim and C. N. Chu, Micro electrical discharge milling using deionized water as a dielectric fluid, 2007 Journal of Micromechanics and Microengineering 17 867-874.
49. H. Hocheng, P.S. Pa, Electropolishing and electrobrightening of holes using different feeding electrodes, Journal of Materials Processing Technology 89–90 (1999) 440–446.
50. C. Zhang, H. Ohmori, W. Li, Small-hole machining of ceramic material with electrolytic interval-dressing (ELID-II) grinding, 2000 Journal of Materials Processing Technology 105 284-293.
51. C. Zhang, H. Ohmori, W. Li, Precision shaping of small diameter wheels using micro electric discharge truing (MEDT) and hole-machining of Al2O3 material, 2000 International Journal of Machine Tools and Manufacture 40 661-674.
52. J. Zhao, J. Zhan, R. Jin, M. Tao, An oblique ultrasonic polishing method by robot for free-form surface, 2000 International Journal of Machine Tools and Manufacture 40 (6) 795-808.
53. J. C. Hung, B. H. Yan, H. S. Liu and H. M. Chow, Micro-hole machining using micro-EDM combined with electropolishing, 2006 Journal of Micromechanics and Microengineering 16 1480-1486.
54. M. Ghouse, M. Viswanathan, E. G. Ramachandran, Occlusion Plating of Copper-Silicon Carbide Composites, 1980 Metal Finishing 78 3 31-35.
55. C. Buelens, J. P. Celis, J. R. Roos, Electrochemical Aspects of The Co-deposition of Gold and Copper with Inert Particles, 1983 Journal of Applied Electrochemistry 13 4 541-548.
56. J. Zahavi, J. Hazan, Electrodeposited Nickel Composites Containing Diamond Particles, 1983 Plating Surface Finishing 70 2 57-61.
57. M. Ghouse, Wear Characteristics of Sediment Co-deposited Nickel-SiC Composite Coatings, 1984 Metal Finishing 82 3 33-37.
58. Y. C. Liu, J. W. Wang, Y. M. Peng, H. J. Chen, J. H. Shen, C. A. Huang, Ni-SiC Composite plating, 1990 MRL Bulletin of Research and Development 4 1 31-34.
59. A. Hovestad, L. J. J. Janssen, Electrochemical Co-deposition of Inert Particles in a Metallic Matrix, 1995 Journal of Applied Electrochemistry 25 6 519-527.
60. G. Maurin and A. Lavanant, Electrodeposition of Nickel/Silicon Carbide Composite Coatings on a Rotating Disc Electrode, 1995 Journal of Applied Electrochemistry 25 12 1113-1121.
61. O. Berkh, A. Bodnevas and J. Zahavi, Electrodeposited Ni-P-SiC Composite Coatings, 1995 Plating and Surface Finishing 82 11 62-66.
62. O. Berkh, S. Eskin, J. Zahavi, Properties of Electrodeposited NiP-SiC Composite Coatings, 1996 Metal Finishing 94 3 35-40.
63. H. Ferkel, B. Müller, W. Riehemann, Electrodeposition of Particle-Strengthened Nickel Films, 1997 Materials Science & Engineering A 234-236 474-476.
64. S. Shawki, Z. Abdel Hamid, Deposition of High Wear Resistance of Ni-SiC Composite Coatings, 1997 Aircraft Engineering and Aerospace Technology 69 3 432-439.
65. K. Helle and F. Walsh, Electrodeposition of Composite Layers Consisting of Inert Inclusions in a Metal Matrix, 1997 Transactions of the Institute of Metal Finishing 75 2 53-58.
66. L. Orlovskaja, N. Periene, M. Kurtinaitiene, S. Survilene, Ni-SiC Composite Plated Under a Modulated Current, 1999 Surface and Coatings Technology 111 2-3 234-239.
67. A. E. Breaux, E. J. Podlaha, Electrodeposition of Nickel-γ-Alumina Nanocomposites, 1999 195th Society Meeting of the Electrochemical Society 99-I Abstract 13.
68. L. Benea, P. L. Bonora, A. Borello, S. Martelli, F. Wenger, P. Ponthiaux, J. Galland, Composite Electrodeposition to Obtain Nanostructured Coatings, 2001 Journal of the Electrochemical Society 148 7 C461- C465.
69. I. Garcia, J. Fransaer, J. P. Celis, Electrodeposition and Sliding Wear Resistance of Nickel Composite Coatings Containing Micron and Submicron SiC Particles, 2001 Surface & Coatings Technology 148 2-3 171-178.
70. N.K. Shrestha, K. Sakurada, M. Masuko and T. Saji, Composite Coatings of Nickel and Ceramic Particles Prepared in Two Steps, 2001 Surface and Coatings Technology 140 2 175-181.
71. I. Shao, P. M. Vereecken, R. R. Cammarata, P. C. Searson, Kinetics of Particle Codeposition of Nanocomposites, 2002 Journal of the Electrochemical Society 149 11 C610-C614.
72. I. Shao, P. M. Vereecken, C. L. Chien, P. C. Searson and R. C. Cammarata, Synthesis and Characterization of Particle-Reinforced Ni/Al2O3 Nanocomposites, 2002 Journal of Materials Research 17 6 1412-1418.
73. S. C. Wang, W. C. J. Wei, Kinetics of Electroplating Process of Nano-Sized Ceramic Particle/Ni Composite, 2003 Materials Chemistry and Physics 78 574-580.
74. S. L. Kuo, X. L. Chen, Y. C. Chen, W. H. Hwu, M. D. Ger, Physical and Chemical Dispersion Effects on the Preparation of Ni-Al2O3 Composite Coating, 2003 Journal of the Chinese Institute of Chemical Engineers 34 4 393-398.
75. L. Du, B. Xu, S. Dong, H. Yang and W. Tu, Study of tribological characteristics and wear mechanism of nano-particle strengthened nickel-based composite coatings under abrasive contaminant lubrication, 2004 Wear 257 1058-1063.
76. L. Wang, Y. Gao, H. Liu, Q. Xue and T. Xu, Effects of bivalent Co ion on the co-deposition of nickel and nano-diamond particles, 2005 Surface & Coatings Technology 191 1-6.
77. N. K. Shrestha, T. Takebe and T. Saji, Effect of particle size on the co-deposition of diamond with nickel in presence of a redox-active surfactant and mechanical property of the coatings, 2006 Diamond & Related Materials 15 1570-1575.
78. M. C. Shaw, Ultrasonic Grinding, 1956 Microtecnic 10 257.
79. G. E. Miller, Special Theory of Ultrasonic Machining, 1957 Journal of Applied Physics 28 149.
80. L. D. Rozenberget, Ultrasonic Cutting, 1964 Authorized translation from the Russian (New York: Consultants Bureau).
81. 曾信智,黏彈性磨料應用於複雜曲面的精拋技術研究,2005中央大學博士論文。
82. N. Gulielmi, “Kinetics of the Deposition of Inert Particles from Electrolytic Baths” 1972 Journal of the Electrochemical Society 119 8 1009-1012.
83. J. P. Celis, J. R. Roos, C. Buelens, “A Mathematical Model for the Electrolytic Codeposition of Particles with a Metallic Matrix” 1987 Journal of the Electrochemical Society 134 6 1402-1408.
84. B. J. Hwang, C. S. Hwang, “Mechanism of Codeposition of Silicon Carbide with Electrolytic Cobalt” 1993 Journal of the Electrochemical Society 140 4 979-984.
85. 柯世宗,Ni基微模具電鑄之研究,2002國防大學中正理工學院博士論文。
86. J. Gabler, L. Schafer, B. Menze and H. W. Hoffmeister, Micro abrasive pencils with CVD diamond coating, 2003 Diamond and Related Materials, 12 707-710.
87. W. Ahmed, H. Sein, N. Ali, J. Gracio and R. Woodwards, Diamond films grown on cemented WC-Co dental burs using an improved CVD method, 2003 Diamond and Related Materials 12 1300-1306.
88. W. Ahmed, H. Sein, M. Jackson and R. Polini, Chemical vapour deposition of diamond films onto tungsten carbide dental burs, 2004 Tribology International 37 957-964.
89. 趙承琛,界面科學基礎,2002復文書局。