| 研究生: |
陳為展 Wei-Chan Chen |
|---|---|
| 論文名稱: |
新型磨粒的磁力輔助螺旋研拋加工之研究 A study on the application of newly-developed abrasive to magneto-assisted spiral polishing. |
| 指導教授: |
顏炳華
Biing-Hwa Yan |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 螺旋研拋加工 、磁力研磨 、磁性磨粒 、不鏽鋼內圓孔 、表面粗糙度 |
| 外文關鍵詞: | Spiral polishing machining, Magneto-assisted polishing, Magnetic abrasive, Inner-wall polishing, Surface roughness |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
螺旋研拋加工法是一種利用高速螺旋迴轉傳遞磨料進行拋光的技術,當螺桿高速旋轉時,磨料將順著螺桿的螺旋溝槽朝上移動,被傳動之磨料直接高速研磨接觸被加工件,運動行程較傳統磨粒流拋光方式行程長而達到表面均勻拋光作用,因本加工法之磨料具有循環作動功能,磨料成本低且消耗量少,可獲得『低成本』、『快速』且『有效率』去除毛邊、變質層等功能,達到被加工件『快速精拋』的加工效果。
本研究將磁力研磨拋光與螺旋研拋法相結合,利用磁力研磨拋光的磁力加強螺旋研拋加工時的加工力,改善游離磨料加工時加工力較弱的缺點,增進研磨拋光加工時的效果。磨粒在螺旋研拋加工法扮演舉足輕重的地位,本研究自行開發新型磁性磨粒,在磨粒表面披覆一層磁性粒子,使之具有磁性磨粒的功能,再者利用磨粒中高分子粒子的彈性,減低磨粒撞擊工件表面時所產生的撞擊能,有效吸收過大的衝擊力,減少過度加工的作用。將之應用在不鏽鋼內圓孔之表面研拋,由實驗可得在磁通量密度90mT、碳化矽粒徑4μm、矽油黏度2000mm2/s、磁性磨粒濃度60%、加工間隙0.6mm及主軸轉速4000rpm之加工參數,可於20分鐘內將表面粗糙度Ra由0.9μm大幅下降到0.0541μm ,改善率達到94%,可明顯縮短拋光時間並得到極佳的表面加工效果。
Spiral polishing mechanism is the technology of employing a high-speed turning screw rod to drive the abrasive to achieve the purpose of polishing the workpiece surface. The fast-turning screw rod drives the abrasive to move upward along the groove of the rod to keep polishing the workpiece in a recycling movement. Compared with traditional polishing methods, the long moving path of the abrasive helps achieve better polishing quality. Besides, the recycling movement of the abrasive not only effectively reduces the cost and the quantity of abrasive, but also removes the burrs in a fast, efficient, and economical way. Therefore, it is a superior method to reach good machining effect.
In this study, the magneto-assisted polishing was combined with spiral polishing mechanism. With the magnetism employed in the magneto-assisted polishing, the polishing force of the abrasive in spiral polishing was enforced and thus the polishing effect was improved. Actually, the abrasive played a crucial role in spiral polishing mechanism. In the present study, a new kind of magnetic abrasive was developed by coating each particle with a layer of magnetic particles. Moreover, the elasticity of the abrasive eased the kinetic energy generated from the polishing process on the workpiece surface, with the function of reducing the great impact during the polishing and preventing the effect of over-polishing. When this technology was applied to the polishing of the inner wall of the bore, the results of the experiment showed that with the parameter variables of magnetic flux density of 90mT, Sic size of 4μm, Silicone oil viscosity of 2000mm2/s, magneto-elastic abrasive concentration of 60%, machining gap of 0.6 mm , and the spindle revolution speed at 4000 rpm, the surface roughness (Ra) was lowered from 0.90 μm. to 0.0541 μm. in 20 minutes, at the improvement rate of 94%. The polishing time was significantly shortened and the optimal polishing effect was obtained.
1.B. H. Yan, H. J. Tzeng, F. Y. Huang, Y. C. Lin, H. M. Chou, “Finishing effects of spiral polishing method on micro lapping surface”, International Journal of Machine Tools & Manufacture, 47(2007), pp. 920-926.
2.D. Scott, , S. Boyina, and K. P. Rajurkar, Analysis and Optimization of Parameter Combinations in Wire Electrical Discharge Machining”, International Journal of Production Research, 29(1991), pp. 2189-2207.
3.B. H. Yan, M. D. Chen, “Effect of ultrasonic vibration on electrical discharge machining characteristic of Ti-6Al-4V alloy”, Journal of Japan Institute of Light Metals, 44(1993), pp. 281-285.
4.T. Shinmura, F. H. Wang, T. Aizawa, “Study on a new finishing process of fine ceramics by magnetic abrasive machining – on the improving effect of finishing efficiency obtained by mixing diamond magnetic abrasives with ferromagnetic particles”, Journal of the japan society for precision engineering, 59(1993), pp. 1251-1256.
5.M. D. Krymsky, “Magnetic abrasive finishing”, Metal Finishing, 91(1993), pp. 21-25.
6.K. Tsuchiya, Y. Shimizu, K. Sakaki, M. Sato, “Polishing mechanism of magnetic abrasion”, Journal of the Japan Institute of Metals, 57(1993), pp. 1333-1338.
7.H. Yamaguchi, T. Shinmura, “New internal finishing process by application of magnetic abrasive machining (3rd report, effects of finishing pressure distribution on characteristics)”, Transactions of the Japan Society of Mechanical Engineers, 61(1995), pp. 2605-2611.
8.H. Yamaguchi, T. Shinmura, “Study on a new internal finishing process by application of magnetic abrasive machining (4th report, effects of diameter of magnetic abrasives on finishing characteristics)”, Transactions of the Japan Society of Mechanical Engineers, 61(1995), pp. 4470-4475.
9.P. Jayakumar, S. Ray, V. Radhakrishnan, “Optimising progress parameters of magnetic abrasive machining to reduce the surface roughness value”, Journal of Spacecraft Technology, 7(1997), pp. 58-64.
10.Y. S. Liao, J. T. Huang, H. C. Su, “A Study on The Machining-Parameters Optimization of Wire Electrical Discharge Machining”, Journal of Materials Processing Technology, 71(1997), pp. 487-493.
11.S. L. Chen, F. Y. Huang, Y. Suzuki, B. H. Yan, “Improvement of material removal rate of Ti-6Al-4V alloy by electrical discharge machining with multiple ultrasonic vibration”, Journal of Japan Institute of Light Metals, 47 (1997), pp. 220-225.
12.N. Guo, T. C. Lee, T. M. Yue and W. S. Lau, “A study of ultrasonic-aided wire electrical discharge machining”, Journal of Materials Processing Technology, 63(1997), pp. 823-828.
13.Z. Wang, Y. Luan, T. Pang, W. Liu, “Elastic and electrolytic ultraprecision polishing”, Metal Finishing, (1998), pp. 22-24.
14.J. J. Haan, P. S. Steif, “Abrasive wear due to slow flow of a concentrated suspension”, Wear, 219(1998), pp.177-183.
15.R. K. Jain, V. K. Jain, P. M. Dixit, “Modeling of material removal and surface roughness in abrasive flow machining process”, International Journal of Machine Tool & Manufacture, 39(1999), pp. 1903-1923.
16.R. K. Jain and V. K. Jain, P. K. Kalra, “Modeling of abrasive flow machining process: a neural network approach”, Wear, 231(1999), pp. 242-248.
17.H. Yamaguchi, T. Shinmura, “Study of the surface modification resulting from an internal magnetic abrasive finishing process”, Wear, 225(1999), pp. 246-255.
18.B. H. Yan, C. C. Wang, “The machining characteristics of Al2O3/6061Al composite using rotary electro-discharge machining with a tube electrode”, Journal of Materials Processing Technology, 195(1999), pp. 222-231.
19.V. K. Jain, “Simulation of surface generated in abrasive flow machining (AFM) Process”, Robotics and Computer Integrated Manufacturing, 15 (1999), pp.403-412.
20.H. Yamagguchi, T. Shinmura, “Study of an internal magnetic abrasive finishing using a pole rotation system- Discussion of the characteristic abrasive behavior”, Journal of the International Societies for Precision Engineering and Nanotechnology, 24(2000), pp. 237-244.
21.H. Yamaguchi, T. Shinmura, “Study of an internal magnetic abrasive finishing using a pole rotation system – discussion of the characteristic abrasive behavior”, Precision Engineering, 24(2000), pp. 237-244.
22.H. Ramasawmy, K. Stout, L. Blunt, “Effect of secondary processing on EDM surfaces”, Surface Engineering, 16(2000), pp. 501-505.
23.B. H. Yan, C. C. Wang, W. D. Liu and F. Y. Huang, “Machining characteristics of Al2O3/6061Al composite using rotary EDM with a disklike electrode”, The International Journal of Advanced Manufacturing Technology, 16(2000), pp. 322-333.
24.R. K. Jain, V. K. Jain, “Optimum selection of machining conditions in abrasive flow machining using neural network”, Journal of Materials Processing Technology, 108(2000), pp. 62-67.
25.V. K. Jain, P. Kumar, P. K. Behera, S. C. Jayswal, “Effect of working gap and circumferential speed on the performance of magnetic abrasive finishing process”, Wear, 250(2001), pp. 384-390.
26.Y. C. Lin, B. H. Yan, F. Y. Huang, “Surface modification of Al-Zn-Mg aluminum alloy using combined process of EDM with USM”, Journal of Materials Processing Technology, 115(2001), pp. 359-366.
27.A. B. Khairy, “Aspects of surface and edge finish by magnetoabrasive particles”, Journal of Materials Processing Technology, 116(2001), pp. 77-83.
28.V. K. Jain, C. Ranganatha, K. Muralidhar, “Evaluation of rheological properties of medium for AFM process”, Machining Science and Technology, 5(2001), pp. 151-170.
29.S. Singh, H. S. Shan, “Development of magneto abrasive flow machining process”, International Journal of Machine Tool & Manufacture, 42(2002), pp. 953-959.
30.S. Singh, H. S. Shan, P. Kumar, “Parametric optimization of magnetic-field-assisted abrasive flow machining by the Taguchi method”, Quality and Reliability engineering international, 18(2002), pp. 273-283.
31.S. Singh, H. S. Shan, “Development of magneto abrasive flow machining process”, International Journal of Machine Tools & Manufacture, 42(2002), pp. 953-959.
32.J. D. Kim, “Polishing of ultra-clean inner surfaces using magnetic force”, The Int. J. of Advanced Manufacturing Technology, 21(2003), pp. 91-97.
33.R. K. Jain, V. K. Jain, “Finite element simulation of abrasive flow machining”, Proceedings of the Institution of the Mechanical Engineering, 217(2003), pp.1723-1736.
34.S. Jha and V. K. Jain, “Design and development of the magnetorheological abrasive flow finishing (MRAFF) process”, International Journal of Machine Tools and Manufacture, 44(2004), pp.1019-1029.
35.V. K. Gorana, V. K. Jain, G. K. Lal, “Experimental investigation into cutting forces and active grain density during abrasive flow machining”, International Journal of Machine Tool & Manufacture, 44(2004), pp. 201-211.
36.R. S. Walia, H. S. Shan, P. Kumar, “Abrasive flow machining with additional centrifugal force applied to the media.”, Machining Science and Technology, 10(2006), pp.341-354.
37.A. M. Wani, V. Yadava, A. Khatri, “Simulation for the prediction of surface roughness in magnetic abrasive flow finishing (MAFF)”, Journal of Materials Processing Technology, 190(2007), pp. 282-290.
38.M. R. Sankar, S. Mondal, J. Ramkumar, V. K. Jain, “Experimental investigations and modeling of drill bit-guided abrasive flow finishing (DBG-AFF) process”, International Journal of Advanced Manufacturing Technology, 42(2008), pp. 678-688.
39.K. Hanada, H. Yamaguchi, H. Zhou, “New spherical magnetic abrasives with carried diamond particles for internal finishing of capillary tubes”, Diamond and Related Materials, 17(2008), pp. 1434-1437.
40.K. K. Kar, N. L. Ravikumar, P. B. Tailon, J. Ramkumar, D. Sathiyamoorthy, “Performance evaluation and rheological characterization of newly developed butyl rubber based media for abrasive flow machining process”, Journal of Materials Processing Technology, 209(2009), pp. 2212-2221.
41.M. R. Sankar, V. K. Jain , J. Ramkumar, “Rotational abrasive flow finishing (R-AFF) process and its effects on finished surface topography”, International Journal of Machine Tools and Manufacture, 50(2010), pp. 637-650.
42.M. R. Sankar, V. K. Jain, J. Ramkumar, “Experimental investigations into rotating workpiece abrasive flow finishing”, Wear, 267(2009), pp. 43-51.
43.M. Das, V. K. Jain, P. S. Ghoshdastidar “Nanofinishing of flat workpieces using rotational–magnetorheological abrasive flow finishing (R-MRAFF) process”, The International Journal of Advanced Manufacturing Technology, 62(2012), pp. 405-420.
44.B. Bhushan, “Introduction to tribology textbook”, John Wiley and Sons, New York (2002).
45.黎正中 譯, “實驗設計與分析”, 高立圖書.
46.T. Shinmura, K. Takazawa, E. Hatano, M. Matsunaga, “Study on Magnetic Abrasive Finishing”, Annals of the CIRP, 39(1990), pp.325-328.