| 研究生: |
周伯恆 BO-HENG CHOU |
|---|---|
| 論文名稱: |
多孔介質二相指形流之相對滲透度 Relative Permeability of Two-phase Fingering Flow in Porous Media |
| 指導教授: |
鍾志昂
C.A. CHUNG |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 能源工程研究所 Graduate Institute of Energy Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 多孔介質 、指形流 、相對滲透度 |
| 相關次數: | 點閱:21 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
指形流是一門探討已久的學問,當流體在流動過程中因黏度差異而產生介面不穩定使流動過程產生類似手指形狀般的型態,便稱為指形流,此種狀況經常發生於岩層或是土壤中。本文利用光刻微影技術在Hele-Shaw cell中產生多孔介質,並以低黏度流體驅替高黏度流體於多孔介質中產生黏性指形,觀察指形及其壓力變化。
實驗設計三種粒徑之多孔介質、三種流率及五種不同流體,藉此探討流體物性及其他實驗設計對黏性壓降有何影響。由實驗結果分析二相流相對滲透度與被驅替流體物性之關係,進而提出低黏度流體驅替高黏度流體之二相流相對滲透度半經驗公式來描述與推測二相指形流之壓力變化。
關鍵字:多孔介質、指形流、相對滲透度
Fingering flow is a topic that has been studied for many decades. If the fluid’s flowing type becomes finger-like due to the instability of the interface, we call the phenomena as fingering flow. This situation usually occurs in rocks or soil. This paper uses the lithography technology of MEMS to build porous media in micro models and considers the low-viscosity fluid displace the high-viscosity fluid in the porous media. Then, the variety of the fingering flow and the pressure drop are investigated.
We adopt three different-radius of porous media, three flow rates, and five different liquids to discuss how these factors impact the viscous pressure drop. Next we analyze the experiment results and look for the relationship between the two-phase relative permeability and the physical properties of the displaced fluid. Eventually, a two-phase relative permeability semi-empirical fit is proposed to describe and speculate the pressure drop of the two-phase fingering flow when the low-viscosity fluid displace the high-viscosity fluid.
Key words: porous media, fingering flow, relative permeability
Al-Housseiny, T. T., Tsai, P. A., & Stone, H. A. (2012). Control of interfacial instabilities using flow geometry. Nature Physics, 8(10), p. 747
Ferrari, A., & Lunati, I. (2013). Direct numerical simulations of interface dynamics to link capillary pressure and total surface energy. Advances in water resources, 57, pp. 19-31.
Ferrari, A., Jimenez‐Martinez, J., Borgne, T. L., Méheust, Y., & Lunati, I. (2014). Challenges in modeling unstable two‐phase flow experiments in porous micromodels. Water Resources Research, 51(3), pp. 1381-1400.
Hill, S. (1952). Channeling in packed columns. Chemical Engineering Science, 1(6), pp. 247-253.
Jankov, M., Løvoll, G., Knudsen, H. A., Måløy, K. J., Planet, R., Toussaint, R., & Flekkøy, E. G. (2010). Effects of pressure oscillations on drainage in an elastic porous medium. Transport in porous media, 84(3), pp. 569-585.
Lake, L. W. (1989). Enhanced Oil Recovery. Englewood Cliffs, N.J: Prentice Hall.
Leclerc, D. F., & Neale, G. H. (1988). Monte Carlo simulations of radial displacement of oil from a wetted porous medium: fractals, viscous fingering and invasion percolation. Journal of Physics A: Mathematical and General, 21(13), 2979.
Lenormand & Zarcone, C. (1984). Role of roughness and edges during imbition in square capillaries. Society of Petroleum Engineers, 13264, pp.16-19
Lenormand, R., Touboul, E., & Zarcone, C. (1988). Numerical models and experiments on immiscible displacements in porous media. Journal of fluid mechanics, 189, pp. 165-187.
Løvoll, G., Jankov, M., Måløy, K. J., Toussaint, R., Schmittbuhl, J., Schäfer, G., & Méheust, Y. (2010). Influence of viscous fingering on dynamic saturation–pressure curves in porous media. Transport in porous media, 86(1), pp. 305-324.
Løvoll, G., Méheust, Y., Toussaint, R., Schmittbuhl, J., & Måløy, K. J. (2004). Growth activity during fingering in a porous Hele-Shaw cell. Physical Review E, 70(2), p. 026301.
Miner, C.S., & Dalton, N.N. (1953). Physical Properties of Glycerine and Its Solution. American Chemical Society Monograph, 117
Nordbotten, J. M., Celia, M. A., & Bachu, S. (2005). Injection and storage of CO 2 in deep saline aquifers: analytical solution for CO 2 plume evolution during injection. Transport in Porous media, 58(3), 339-360
Paterson, L. (1981). Radial fingering in a Hele Shaw cell. Journal of Fluid Mechanics, 113, pp. 513-529.
Persoff, P., & Pruess, K. (1995). Two‐phase flow visualization and relative permeability measurement in natural rough‐walled rock fractures. Water resources research, 31(5), 1175-1186.
Pihler-Puzović, D., Illien, P., Heil, M., & Juel, A. (2012). Suppression of complex fingerlike npatterns at the interface between air and a viscous fluid by elastic membranes. Physical review letters, 108(7), p. 074502.
Rabbani, H. S., Or, D., Liu, Y., Lai, C. Y., Lu, N. B., Datta, S. S., ... & Shokri, N. (2018). Suppressing viscous fingering in structured porous media. Proceedings of the National Academy of Sciences, 115(19), 4833-4838.
Saffman, P. G., & Taylor, G. (1958). The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences(Vol. 245,No. 1242), pp. 312-329.
林鴻諭. (2016). 利用異質孔徑界面增強多孔介質內流體驅替效果之研究. 國立中央大學碩士論文.
郭旻宜. (2019). 異質多孔介質指形流的動態壓力特性. 國立中央大學碩士論文.
陳冠佑. (2019). 異質多孔介質二相指形流之壓力特性. 國立中央大學碩士論文.