| 研究生: |
林岳翰 Yueh-Han Lin |
|---|---|
| 論文名稱: | Multi-Thermal analysis of Solar Dynamic Events Using Differential Emission Measure |
| 指導教授: |
林佳賢
Chia-Hsien Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 太空科學研究所 Graduate Institute of Space Science |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 133 |
| 中文關鍵詞: | CME 、filament 、SAD 、DEM |
| 外文關鍵詞: | CME, filament, SAD, DEM |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此篇論文是研究三種動態太陽事件的溫度和電漿密度變化,分別為:日冕物質拋射 (CME)、日珥噴發(filament eruption)和supra-arcade downflows (SADs),並試圖計算三種事件的速度和能量。我們採用Differential Emission Measure (DEM)的方法完成研究,並使用Hannah & Kontar 2012發展的程序和Atmospheric Imaging Assembly on Solar Dynamics Observatory (AIA/SDO)的EUV 影像去計算DEM的結果。我們研究和Hannah & Kontar 2013同樣的2010年11月3日CME事件,在我們的結果中,CME主要由溫度在6-16MK的電漿組成,噴發速度大約630±100 km⁄s,CME的core的能量大約〖10〗^28 erg,CME的stem的能量大約〖10〗^27 erg,此結果和普遍研究指出的CME能量大約少了兩個數量級,我們推測此差距源自於我們的研究是計算部分區域CME的能量。在2012年4月15日的filament eruption研究結果指出,filament主要由溫度在0.5-4MK和8-20MK的電漿組成,噴發速度大約420±40 km⁄s。在2011年10月22日的SAD事件研究結果指出,SAD主要由溫度在8-16MK的電漿組成,並且SAD的電將密度會隨者靠近太陽表面時有所增長,SAD移動的速度大約100±10 km⁄s。
The objective of this study is to understand the density and temperature structures of three types of solar dynamic events: Coronal Mass Ejection (CME), filament eruption, and supra-arcade downflows (SADs), and to examine their velocity, kinetic energy, and thermal energy. To accomplish the objectives, we use the Differential Emission Measure (DEM) computation procedures developed by Hannah & Kontar 2012 and the EUV images from the Atmospheric Imaging Assembly on Solar Dynamics Observatory (AIA/SDO) to calculate DEM. The CME event on 2010 November 3 is the same event studied by Hannah & Kontar 2013. In our result, the CME of core and stem are mainly composed of plasma at the temperature range 6-16MK, and the CME velocity is approximately 630±100 km⁄s. Both of kinetic and thermal energy of the core are approximately 〖10〗^28 erg, and those of the stem are approximately 〖10〗^27 erg, which are more than 2 orders of magnitude smaller than the average CME kinetic energy. It could be because we only calculated the energy of part of the CME structure. The result of the filament on 15th April 2012 reveals that this filament is mainly composed of plasma at the temperature intervals 0.5-4MK and 8-20MK, and the filament eruption velocity is approximately 420±40 km⁄s. The result of the SADs on 2011 Oct 22 shows that those SADs are mainly composed of plasma at the temperature range 8-16MK, the plasma density of the SAD at this temperature range increased with time as the SAD moved toward the flare arcade, and the SAD velocity is approximately 100±10 km⁄s.
Reference
[1] Tousey, R.; Koomen, M. J., “Transients Observed Through August During 1972 by the NRL White Light Coronagraph in OSO-7”, Flare-Produced Shock Waves in the Corona and in Interplanetary Space, 1974., p.89
[2] Illing, R.M.E.; Hundhausen, A.J., “Possible observation of a disconnected magnetic structure in a coronal transient”, Journal of Geophysical Research 88, 1983
[3] Ciaravella, A,; Raymond, J.C,; van Ballegooijen, A,. et al., “Physical Parameters of the 2000 February 11 Coronal Mass Ejection: Ultraviolet Spectra versus White-Light Images”, The Astrophysical Journal, Volume 597, Issue 2, 2003
[4] Bemporad, A.; Raymond, J.; Poletto, G.; Romoli, M., “A Comprehensive Study of the Initiation and Early Evolution of a Coronal Mass Ejection from Ultraviolet and White-Light Data”, The Astrophysical Journal, Volume 655, Issue 1, p. 576-590, 2007
[5] Akmal, A.; Raymond, J. C.; Vourlidas, A., et al., “Mass and Energy of Erupting solar Plasma Observed with the X-Ray telescope on HINODE“, The Astrophysical Journal, Volume 553, p.922, 2001
[6] X. Cheng; J. Zhang, S. H. Saar; M. D. Ding, “Differential Emission Measure Analysis of Multiple Structural Components of Coronal Mass Ejections in the Inner Corona”, The Astrophysical Journal, Volume 761, Issue 1, 2012
[7] Qiu, Jiong; Yurchyshyn, Vasyl B., “Magnetic Reconnection Flux and Coronal Mass Ejection Velocity”, The Astrophysical Journal, Volume 634, Issue 1, 2005
[8] Mewaldt, R. A.; Cohen, C. M. S.; Labrador, A. W et al, “Proton, helium, and electron spectra during the large solar particle events of October-November 2003”, Journal of Geophysical Research: Space Physics, Volume 110, 2005
[9] Parenti, Susanna, “Solar Prominences: Observations” Living Reviews in Solar Physics, volume 11, 2014
[10] Labrosse, N.; Heinzel, P., “Physics of Solar Prominences: I-Spectral Diagnostics and Non-LTE Modelling”, Space Science Reviews, Volume 151, Issue 4, pp.243-33, 2010
[11] Munro, R. H.; Gosling, J. T. et al, “The association of coronal mass ejection transients with other forms of solar activity”, Solar Physics, volume 61, 1979
[12] NASA’s Goddard Space Flight Center, http://hesperia.gsfc.nasa.gov/sftheory/index.htm
[13] McKenzie, D. E.; Hudson, H. S., “X-Ray Observations of Motions and Structure above a Solar Flare Arcade”, The Astrophysical Journal, Volume 519, 1999
[14] McKenzie, D. E., “Supra-arcade Downflows in Long-Duration Solar Flare Events”, Solar Physics, volume 195, Issue 2, p. 381-399, 2000
[15] Hannah, I. G.; Kontar, E. P., “Differential emission measures from the regularized inversion of Hinode and SDO data”, Astronomy & Astrophysics, Volume 539, 2012
[16] Lemen, James,; Alan M.; Akin, David J. et al., “The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO)”, Solar Physics, Volume 275, 2011
[17] Boerner, Paul; Edwards, Christopher; Lemen, James, et al, “Initial Calibration of the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO)”, Solar Physics, Volume 275, Issue 1-2, p. 41-66, 2012
[18] O'Dwyer, B.; Del Zanna, G.; Mason, H. E, et al, “SDO/AIA response to coronal hole, quiet Sun, active region, and flare plasma”, Astronomy and Astrophysics, Volume 521, 2010
[19] Aschwanden, Markus J.; Boerner, Paul, “Solar Corona Loop Studies with the Atmospheric Imaging Assembly. I. Cross-sectional Temperature Structure”, The Astrophysical Journal, Volume 732, 2011
[20] E. Landi, P.R. Young, K.P. Dere, G. Del Zanna, et al, “CHIANTI—An Atomic Database for Emission Lines. XIII. Soft X-Ray Improvements and Other Changes”, The Astrophysical Journal, Volume 763, 2013
[21] John T. Mariska, “The Solar Transition Region“, Cambridge University Press, 1992
[22] Hannah, I. G.; Kontar, E. P., “Multi-thermal dynamics and energetics of a coronal mass ejection in the low solar atmosphere”, Astronomy & Astrophysics, Volume 553, 2013
[23] Bruner, M. E.; McWhirter, R. W. P., “Radiating properties of solar plasmas”, strophysical Journal, volume 326, 1988