| 研究生: |
吳淑惠 SHU-HUI WU |
|---|---|
| 論文名稱: |
週期為r之週期點個數的平均值 On the average of number of periodic point with period r |
| 指導教授: |
夏良忠
Liang-Chung Hsia |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 38 |
| 中文關鍵詞: | 週期點 、週期 、平均值 |
| 外文關鍵詞: | periodic point, period, function field |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這篇論文中,我們要計算在一個function field上週期為r的週期點個數的平均值。這個結果和古典結果有一些不同。在第一、二節中,我們先複習整數環和多項式環的一些性質,並加以比較這兩個環的相似性。第三節開始討論固定點的分佈情形,最後利用第三節的結果來估計週期為r的週期點個數的平均值。
In this paper, we compute the average of the number of periodic points with period r on a function field. The result has a little different with the classical result. In the first two sections, we review some properties of the ring of integer Z and the polynomial ring A. Then we will compare the ring of integer Z and the polynomial ring A. In section 3, we discuss the distribution of fixed points. Using the result in section 3 to estimate the range of the average of periodic point with period r.
[1] Serge Lang, Algebra, 3rd ed. Springer-Verlag.
[2] Ireland Kenneth F. and Michael Rosen.,A Classical Introduction to Modern Number Theory, 2nd edition, New York Springer-Verlag, 1982.
[3] Michael Rosen, Number Theory in Function Fields, GTM210, New York Springer-Verlag, 2002.
[4] Andrei Khrennikov and Marcus Nilsson, On the Number of Cycles of p-adic Dynamical Systems, Journal of Number Theory, no.2, Page.255-264, 2001.