跳到主要內容

簡易檢索 / 詳目顯示

研究生: 石振宗
Zhen-Zong Shi
論文名稱: 適用於NB-IoT網路的實體隨機存取通道檢測器設計
An Effective Physical Random Access Channel Detector for NB-IoT Network
指導教授: 林嘉慶
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 44
中文關鍵詞: 窄頻物聯網窄頻實體隨機存取通道通道偵測
外文關鍵詞: NB-IoT, NPRACH, Channel detection
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 物聯網的發展將給人類帶來深刻的變革, 同時 物聯網被視為現在及未來無線通信技
    術的一股重要驅動力量 它可以實現人與物、物與物之間的全面連接,為人類帶來更加
    便捷、高效、安全的生活和工作方式。
    窄頻物聯網 Narrowband Internet of Things NB IoT 是大規模機器型通信中的一
    項強大技術,在即將到來的 新世代 無線通信中至關重要。 第 三代合作夥伴計劃 3GPP 中
    的 NB IoT 標準 承諾在對延 遲寬容的應用中 為大量低吞吐、低成本 的 設備提供更佳 的覆
    蓋範圍, 並且 還 具有較低的功耗 。 同時 NB IoT 廣泛地使用了 長期演進 (Long Term
    Evolution, LTE 的設計,包括下行正交分頻多址接入、上行單載波分頻多址接入、通道
    編碼、速率匹配 等 。然而,一種新型窄頻實體 隨機存取通道 已被重新設計為具有單音頻
    率跳躍的前導 信號。 而 本文研究了 NB IoT 物理隨機存取 通道的隨機接入前導設計和檢
    測, 我們 稱為 NPRACH Narrowband Physical Random Access Channels 。
    在本論文中, 描述了 3GPP NB IoT 系統中的 NPRACH 的系統架構和運作原理, 首
    先使用 Neyman Pearson 準則設計了一個最佳的活動檢測方案,而 為了減少由不同載波
    頻率偏移 (C arrier Frequency Offsets, CFOs) 所帶來的頻率偏移,本文 使用了 一 種 聯合最大
    概似估計 Joint Maximum Likelihood Estimation JMLE 用於聯合估計 正規化載波頻
    率偏移 Normalized Carrier Frequency Offset, NCFO 和時序誤差 Timing Error, TE 避免
    了 時變頻率選擇性衰落通道所疊加的問題。 所以本文 在 接收端 採用 了一種 符元級匹配濾
    波器 (Symbol level Matched Filter, SLMF) 以有效降低帶外雜訊和干擾,而不會過度累積
    互相關中發生的相位增量。 並將 接收機算法 結果 進行模擬和分析,針對錯誤偵測的改良,
    並根據模擬結果顯示,接收機確實能 有效地降 低誤報和遺漏概率 ,改善系統的性能與效
    率。


    The development of the Internet of Things (IoT) will bring profound changes to humanity.
    IoT is considered a significant driving force behind current and future wireless communication
    technologies. It enables comprehensive connectivity between people and things, as well as
    between things th emselves, providing a more convenient, efficient, and secure way of life and
    work.
    Narrowband Internet of Things (NB IoT) is a powerful technology in large scale machine
    type communication and plays a crucial role in the upcoming generation of wireless
    communication. The NB IoT standard, developed by the Third Generation Partnership Project
    (3GPP), promises improved coverage for a large number of low throughput and low cost
    devices in delay tolerant applications, while also offering lower power consumpti on. NB IoT
    extensively utilizes design elements from Long Term Evolution (LTE), including downlink
    orthogonal frequency division multiple access, uplink single carrier frequency division multiple
    access, channel coding, and rate matching. However, a novel narrowband physical random
    access channel has been redesigned with a single tone frequency hopping preamble. This paper
    focuses on the design and detection of the random access preamble for the NB IoT physical
    random access channel, which we refer to as Na rrowband Physical Random Access Channels
    (
    In this paper, we describe the system architecture and operation principles of NPRACH in
    the 3GPP NB IoT system. We first design an optimal activity detection scheme using the
    Neyman Pearson criterion. To mitigate the frequency offsets introduced by different carrier
    frequency offsets (CFOs), we employ a Joint Maximum Likelihood Estimation (JMLE) to
    jointly estimate the Normalized Carrier Frequency Offset (NCFO) and Timing Error (TE),
    thereby avoiding th e superposition of time varying frequency selective fading channels. We
    also utilize a symbol level matched filter (SLMF) at the receiver to effectively reduce out of
    iii
    band noise and interference without excessive accumulation of phase increments in cross
    band noise and interference without excessive accumulation of phase increments in cross--ccorrelations. The receiver algorithm's results are simulated and analyzed, focusing on the orrelations. The receiver algorithm's results are simulated and analyzed, focusing on the improvement of error detection. The simulation results demonstrate that the receiver can improvement of error detection. The simulation results demonstrate that the receiver can effectively reduce the probabilities of false alarm and miss detection, thereeffectively reduce the probabilities of false alarm and miss detection, thereby improving system by improving system performance and efficiency.performance and efficiency.

    摘要 ................................................................................................................................... i Abstract ............................................................................................................................. ii 致謝 ................................................................................................................................. iv 目錄 .................................................................................................................................. v 圖目錄 ............................................................................................................................ vii 表目錄 ........................................................................................................................... viii 第一章 序論 .................................................................................................................... 1 1.1 研究背景與動機 ................................................. 1 第二章 NPRACH 介紹 ................................................................................................... 3 2.1 隨機存取流程 .................................................. 3 2.2. 窄頻實體隨機存取通道 ......................................... 4 2.2.1 前導訊號系統架構 ........................................... 5 2.2.2 跳頻系統原理 ............................................... 5 第三章 NPRACH 訊號建模 ........................................................................................... 8 3.1 NPRACH 訊號建模 .............................................. 8 3.2 時變頻率選擇性衰落通道 ....................................... 11 3.2.1 Rayleigh 衰落通道 .......................................... 11 3.3 決策閥值與數值方法 ........................................... 12 3.3.1 決策閾值 .................................................. 12 3.3.2 中央極限定理&迭代搜索法 ................................... 13 vi 第四章 NPRACH 前導檢測和時序到達估計方法 ..................................................... 15 4.1 NPRACH 前導檢測 ............................................. 15 4.2 聯合估計方法 ................................................. 17 4.3 低複雜度的干擾消除器 ......................................... 17 第五章 模擬結果 .......................................................................................................... 20 5.1 無CFO 情況下誤報率與遺漏率比較 ............................... 22 5.2 有CFO 情況下誤報率與遺漏率比較 ............................... 26 5.3 導入符元級匹配濾波器誤報率與遺漏率比較 ....................... 28 第六章 結論 .................................................................................................................. 30 參考文獻 ........................................................................................................................ 31

    [1] Y.-P. E. Wang et al., “A primer on 3GPP narrowband Internet of Things (NB-IoT),” IEEE Commun. Mag., vol. 55, no. 3, pp. 117–123, Mar. 2017.
    [2] J. Xu et al., “Narrowband Internet of Things: Evolutions, technologies, and open issues,” IEEE Internet Thing s J., vol. 5, no. 3, pp. 1449–1462, Jun. 2018.
    [3] X. Lin, A. Adhikary, and Y.-P. E. Wang, “Random access preamble design and detection for 3GPP narrowband IoT systems,” IEEE Wirel. Commun. Lett., vol. 5, pp. 640–643, Dec. 2016.
    [4] J.-K. Hwang, C.-F. Li, and C. Ma, “Efficient detection and synchronization of superimposed NB-IoT NPRACH preambles,” IEEE Internet of Things Journ., vol. 6, pp. 1173–1182, Feb. 2019.
    [5] 3GPP, TS 36.104, "Evolved Universal Terrestrial Radio Access (E-UTRA): Base Station (BS) Radio Transmission and Reception, Version 15.4.0", Sep. 2018.
    [6] Q. Wu, P. Wu,W.Wen, T. Yang, and M. Xia, "An efficient NPRACH receiver design for NB-IoT systems," IEEE Internet Thing J., vol. 7, no. 10, pp. 10418-10426, Oct. 2020.
    [7] Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) procedures in idle mode V. 13.7.0, 3GPP Standard TS36.304, Sep. 2017.
    [8] W. C. Jakes, Microwave Mobile Communications. New York: Wiley, 1974
    [9] 3GPP, " WF on hopping patterns of NB-PRACH," in document R1-161428, Ericsson, Stockholm, Sweden, 2016.
    [10] "Physical Channels and Modulation (Release 13, V13.9.0)," 3GPP Standard TS 36.211, Apr. 2018
    [11] Cho S., Kim H., Jo G. Determination of Optimum Threshold Values for NPRACH Preamble Detection in NB-IoT Systems; Proceedings of the 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN); Prague, Czech Republic. 3–6 July 2018; pp. 616–618.
    [12] Simon Haykin, Communication Systems, 4th Edtion,New York, John Wiley&Sons,2001.Wiley&Sons,2001.
    [13] S. Kay, Fundamentals of Statistical Signal Processing—Vol. 2 Detection Theory, Upper Saddle River, NJ, USA:Prentice-Hall, 1998.
    [14] R. Durrett, Probability: Theory and Examples, Brooks/Cole Publishing Co., Pacific Grove, CA, 1991.
    [15] A. Papoulis and S. U. Pillai, Probability, Random Variables and Stochastic Processes. 4th ed., McGraw-Hill, 2002.
    [16] J. G. Proakis and M. Salehi, Digital Communications. 5th ed., McGraw-Hill, 2008.
    [17] A Hui and K. Letaief, "Successive Interference Cancellation for Multiuser Asynchronous DS/CDMA Detectors in Multipath Fading Links", IEEE Trans. Comm, vol. 46, no. 3, pp. 384-91, March 1998.
    [18] "Technical specification group GSM/EDGE radio access network; cellular system support for ultra low complexity and low throughput Internet of Things; (release 13) v2.1.0", Aug. 2015.
    [19] Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation, 2022.
    [20] H. Chougrani, S. Kisseleff and S. Chatzinotas, "Efficient Preamble Detection and Time-of-Arrival Estimation for Single-Tone Frequency Hopping Random Access in NB-IoT", IEEE Internet Things J., vol. 8, no. 9, pp. 7437-7449, 2021.

    QR CODE
    :::