跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張家誠
Chia-cheng Chang
論文名稱: 氧化鋅奈米粒子之光致螢光性質研究
A study on the photoluminescence properties of ZnO nanoparticles
指導教授: 蔣孝澈
Anthony S.T. Chiang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學與工程研究所
Graduate Institute of Materials Science & Engineering
畢業學年度: 96
語文別: 中文
論文頁數: 54
中文關鍵詞: 奈米粒子氧化鋅光致螢光
外文關鍵詞: nanoparticles, photoluminescence, ZnO
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究發現由濕化學方法所成長的氧化鋅奈米粒子具有一些特別的光激發螢光性質。反應時間的拉長可以抑制已二醇相中氧化鋅奈米粒子的可見光發光,同時增強近能帶邊緣輻射。
    亞麻仁油酸表面改質的氧化鋅奈米粒子,再旋轉塗佈至矽晶片上,做硬化處理前後的螢光譜型幾乎一樣。跟在乙二醇分散液中的液態樣品相比,藍紫外光部分有稍微的藍位移。
    將氧化鋅奈米粒子包覆二氧化矽後,取出的固態粉體可以抑制藍紫外光的發光,使樣品只做可見光波段的發光。此樣品經700℃的燒結後,還可提升可見光波段發光強度約2倍。如果此材料可在環氧樹脂固化過程中與其均勻混合,則有應用在白光發光二極體的潛力。


    The photoluminescence property of the ZnO NPs produced by wet chemical process was studied in this research. With the increase of reaction time, the visible luminescence was suppressed and the near- band-edge emission was enhanced. Therefore, if visible luminescence was the target, the reaction time should be kept short.
    The above produce ZnO NPs was further modified with linoleic acid as ligand and coated on silicon wafer. The photoluminescence spectra of coated film before and after thermal cure were identical. A photouminescent hybrid hard coat could thus be obtained.
    When ZnO NPs were capped with silicon dioxide, the blue-UV emission shrunk, so that only visible luminescence was left. This was true whether the NPs were produced by short or long reaction time. However, short reaction time produced brighter visible luminescence. The luminescence intensity could be further enhanced by almost 2 times after sintering at 700oC for one hour. This material has potential in the application on white LED if it can completely mixed with epoxy resin during curing process.

    中文摘要 i 英文摘要 ii 目錄 iii 圖目錄 v 表目錄 viii 第一章 緒論 1 1-1氧化鋅材料簡介 1 1-2 研究製程與研究目的 2 第二章 實驗原理 4 2-1濕化學方法原理 4 2-1-1水解反應(hydrolysis reaction) 4 2-1-2分電荷模式(partial charge model) 4 2-1-3縮合反應(condensation reaction) 8 1.羥合反應(olation) 8 2.氧橋反應(oxolation) 9 2-1-4粒子的分散 9 1.電荷穩定(Charge stabilization) 9 (1)界達電位(Zeta potential) 10 (2)凡得瓦力 12 2.空間穩定(steric stabilization) 14 2-1-5有待釐清的部份 14 2-2 X光繞射量測與原理 15 2-3 光激發螢光原理與量測 16 2-4 穿透式電子顯微鏡原理與量測 18 第三章 氧化鋅奈米結晶合成與螢光量測 20 3-1 實驗A 20 3-1-1 實驗A製程流程 20 3-1-2 X光繞射結果 20 3-1-3 Debye-Scherer formula與晶粒大小估計 22 3-1-4 穿透式電子顯微鏡影像與晶粒大小估計 23 3-1-5 動態光散設法(dynamic light scattering)與粒徑大小估計 24 3-1-6 吸收光譜與粒徑大小估計 25 3-1-7 螢光光譜量測結果 27 3-2 實驗B 28 3-2-1 實驗B製程流程 28 3-2-2 水含量的估計 30 3-2-3 螢光光譜量測結果 32 (1)無添加水濃縮下層液(H2O/ZnO=2.9403) 32 (2)額外添加水濃縮下層液(H2O/ZnO=5.0233) 33 3-2-4 粒子聚集程度與螢光性質 34 3-2-5 pH值與螢光性質 36 3-3 實驗C 39 3-3-1 實驗C製程流程 39 3-3-2 粒子聚集程度與螢光性質 41 3-3-3 pH值與螢光性質 42 3-3-4 穿透度與pH值的關係 44 3-3-5 一些照片 45 3-4 實驗D 表面改質螢光與固態螢光 46 (1)相轉換後在紫外燈照射下的外觀 46 (2)油酸和亞麻仁油酸表面改質之固態螢光性質 46 (3)達穩態液態樣品之固態螢光比較 47 (4)旋轉塗布之固態樣品久置後的螢光性質 47 (5)二氧化矽表面改質之固態螢光 48 (6)反應先期與後期樣品之二氧化矽表面改質固態螢光 49 (7)與商用材料的比較 50 第四章 結論與建議 51 參考文獻 52

    [1] Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morko?, “A comprehensive review of ZnO materials and devices” ,
    J. Appl. Phys., vol.98, issue 4, pp. 041301-1~041301-103, August 2005.
    [2]S. J. Xu, W. Liu, and M. F. Li “Direct determination of free exciton binding energy from phonon-assisted luminescence spectra in GaN epilayers” , Appl. Phys. Lett., vol. 81, issue 16, pp. 2959~2961, October 2002.
    [3]K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, “Mechnisms behind green photoluminescence in ZnO phosphor powders ” , J. Appl. Phys., vol. 79, issue 10, pp. 7983~7990, May 1996.
    [4]K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, “Correlation between photoluminescence and oxygen vacancies” , Appl. Phys. Lett., vol. 68, issue 3, pp. 403~406, January 1996.
    [5]K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, J. Caruso, M. J. Hampden-Smith, and T. T. Kodas, “Green Photoluminescence efficiency and free-carrier density in ZnO phosphor powders prepared by spray pyrolysis” , Journal of Luminescence, vol. 75, issue 1, pp.11-16, July 1997.
    [6]S. A. Studenkin, Nickolay Golego, and Michael Cocivera, “Fabrication of green and orange photoluminescence, undoped ZnO films using spray pyrolysis” , J. Appl. Phys., vol. 84, issue 4, pp. 2287-2293, August 1998.
    [7]F. H. Letter, H. R. Alves, A. Hofstaetter, D. M. Hofman, and B. K. Meyer, “The Oxygen Vancancy as the Origin of a Green Emission in Undoped ZnO” , Phys. Stat. Sol. (b), vol. 226, issue 1, pp. R4-R5, July 2001.
    [8]F. Leiter, H. Alves, D. Pfiterer, N. G. Romanov, D. M. Hofmann, and B. K. Meyer, “Oxygen Vacancies in ZnO” , Physica B, vol. 340-342, pp. 201-204, December 2003.
    [9]B. X. Lin, Z. X. Fu, and Y. Jia, “Green luminescent center in undoped zinc oxide films deposited on silicon substrate” , Appl. Phys. Lett., vol. 79, issue7, pp. 943-945, August 2001.
    [10]N. O. Korsunska, L. V. Borkovska, B. M. Bulakh, L. Yu. Khomenkova, V. I. Kushnirenko, and I. V. Markevich, “The influence of defect drift in external electrical field on green photoluminescence of ZnO single crystals” , Journal of Luminescence, vol. 102-103, pp. 733-736, May 2003.
    [11]Xiaotian Yang, Guotong Du, Xinqiang Wang, Jinzhong Wang, Boyang Liu, Yuantao Zhang, Dali Liu, H. C. Ong, and Shuren Yang, “Effect of post-thermal annealing on properties of ZnO thin film grown on c-Al2O3 by metal-organic chemical vapor depositon” , Journal of Crystal Growth, vol. 252, issue1-3, pp. 275-278, May 2003.
    [12]A. F. Kohan, G. Ceder, D. Morgan, and Chris G. Van de Walle, “First-principle study of native defects in ZnO” , Phys. Rev. B, vol. 61, issue 22, pp. 15019-15027, June 2000.
    [13]R. T. Sanderson., “An interpretation of Bond lengths and a classification of bonds” , Science, vol. 114, issue 2973, pp. 670-672, December 1951.
    [14]R. G. Parr and R. G. Pearson, “Analytic energy second derivatives for two-configuration self-consistent-field wave functions. Application to twisted ethylene and to trimethylene diradical” , J. Amer. Chem. Soc., vol. 105, issue 26, pp. 7512-7516, December 1983.
    [15]A. L. Alred and E. G. Rochow, “A scale of electronegativity based on electrostatic force” , J. Inorg. Nucl. Chem., vol. 5, issue 4, pp. 264-268, 1958.
    [16]R.G. Parr, R. A. Donnelly, and M. Levy, W. E. Palke, “Electronegativity : The density function viewpoint” , J. Chem. Phys., vol. 68, issue 8, pp.3801-3807, April 1978.
    [17]S. Barman and S. Vasudevan, “Contrasting Meting Behavior of Zinc Stearate and Zinc Oleate” , J. Phys. Chem. B, vol. 110, issue 2, pp.651-654, January 2006.
    [18]S. Monticone, R. Tufeu, and A. V. Kanaev, “Complex nature of the UV and visible fluorescence of colloidal ZnO nanoparticles” , J. Phys. Chem. B, vol. 102, No. 16, pp. 2854-2862, April 1998.
    [19]K. F. Lin, H. M. Cheng, H. C. Hsu, L. J. Lin, W. F. Hsieh, “Band gap variation of size-controlled ZnO quantum dots synthesized by sol-gel method” , Chem. Phys. Lett., vol. 409, issue 4-6, pp.208-211, June 2005.
    [20]N. S. Pesika, K. J. Stebe, and P. C. Searson, “Determination of the particle size distribution of quantum nanocrystals from absorbance spectra” , adv. mater., vol. 15, issue 15, pp. 1289-1291, August 2003.
    [21]Eugene Hecht, 4th Eds, Optics, Pearson Intrenational Edition, Illinois, 2002.
    [22]Craig F. Bohren, and Donald R. Huffman, Absorption and scattering of light by small particles, John Wiley & Sons, Inc., New York, 1983.
    [23]X. Xu, C. Guo, Z. Qi, H. Liu, J. Xu, C. Shi, C. Chong, W. Huang, Y. Zhou, and C. Xu, “Annealing effect for surface morphology and luminescence of ZnO film on silicon” , Chem. Phys. Lett., vol. 364, issue 1-2, pp.57-63, September 2002.

    QR CODE
    :::