| 研究生: |
高竹嵐 Chu-Lan Kao |
|---|---|
| 論文名稱: |
多維非線性跨界問題暨相關應用 Multidimensional Nonlinear Boundary Crossing Problems with Applications |
| 指導教授: |
傅承德
Cheng-Der Fuh |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 統計研究所 Graduate Institute of Statistics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 首次通過機率 、馬可夫更新理論 、收斂速度 |
| 外文關鍵詞: | first-passage probabilities, Markov renewal theory, rate of convergence |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究一高維簡單隨機漫步跨越一高維度曲面的首次穿越時間。此類問題在實務上有相當廣泛的運用,諸如多重CUSUM、公司違約相關性,以及多重偵測問題等。在若干條件下,我推導出首次穿越時間機率分佈與期望值的漸近行為。其中期望值漸近行為的推導,乃奠基於本論文率先提出的新方法:我首先將問題轉化為一個一維馬可夫隨機漫步跨越一直線的首次穿越時間,接著再以一序列具有遍歷性的馬可夫隨機漫步來逼近之。最後,本文將既有的馬可夫隨機漫步更新理論,推廣至一序列之馬可夫隨機漫步並應用之,終得到原期望值之漸近行為。本論文同時呈現相關數值結果,討論相關應用、推廣,以及此『馬可夫化』手法之未來可能應用。
In this dissertation, I study the first passage time of a
multidimensional simple random walk crosses a certain type of
nonlinear boundary, which is motivated by a wide class of
applications, including MCUSUM, correlated defaults, and
multi-sensor problem. Under some regularity conditions, I derive
asymptotic expansions for the ruin probability and the expected
value. The evaluation of the expected value is through an
innovative device that first rewrite the problem as a one
dimensional Markov random walk crossing a linear boundary, and then approximate this Markov random walk by a sequence of uniformly ergodic Markov random walks. For this purpose, I also study renewal theory for a sequence of Markov random walks. Numerical simulations are given for illustration. Applications and further extensions are presented, along with the discussion of possible future usage of this Markovianlize device.
[1] Alsmeyer, G. (1994). On the Markov renewal theorem. Stoch. Proc. Appl. 50, 37–56.
[2] Alsmeyer, G. (2000). The ladder variables of a Markov random walk. Theory Probab. Math. Statist. 20, 151–168.
[3] Brockman, P. and Turtle, H. J. (2003). A barrier option framework for corporate security valuation. J. Financ. Econ. 67, 511-529.
[4] Buckholtz, P. G. and Wasan, M. T. (1979). First passage probabilities of a two dimensional Brownian motion in an anisotropic medium. Indian J. Statist. 41, 198-206.
[5] Carlsson, H. (1982). Error estimate in d-dimensional renewal theory. Comp. Math. 46, 227-253.
[6] Carlsson, H. and Wainger, S. (1982). An asymptotic series expansions of the multidimensional renewal measure. Comp. Math. 47, 355-364.
[7] Chaidee, N. and Neammanee, K. (2008). Berry-Esseen bound for independent random sum via Stein’s method. International Mathematical Forum 3, 721-738.
[8] Chan, H.P. and Lai, T.L. (2008). Asymptotic approximations for error probabilities of sequential
or fixed sample size tests in exponential families. Ann. Statist. 28, 1638-1669.
[9] Fuh, C. D. (2004). Uniform Markov renewal theory and ruin probabilities in Markov random walks. Ann. Appl. Probab. 14, 1202-1241.
[10] Fuh, C. D., Kao, M., Hsu, T. Y., and Yang, J. C. (2011). Modelling correlated defaults with contagion and competitive effects using dependent barriers. The 15th International Business Research Conference, Sydney.
[11] Fuh, C. D. and Lai, T. L. (1998). Walds equation, first passage time and moments of ladder variables in Markov random walks. J. Appl. Probab. 35, 560-580.
[12] Fuh, C. D. and Lai, T. L. (2001). Asymptotic expansions in multidimensional Markov renewal theory and first passage times for Markov random walks. Adv. Appl. Prob. 33, 652-673.
[13] Fuh, C. D. and Zhang, C. H. (2000). Poisson equation, moment inequalities and quick convergence for Markov random walks. Stoch. Proc. Appl. 87, 53-67.
[14] Giesecke, K. (2004). Correlated default with incomplete information. J. Bank. Financ. 28, 1521-1545.
[15] Haworth, H., Reisinger, C., and Shaw, W. (2008). Modelling bonds and credit default swaps using structural model with contagion. Quant. Financ. 8, 669-680.
[16] Iyengar, S. (1985). Hitting lines with two dimensional Brownian motion. SIAM J. Appl. Math. 45, 983-989.
[17] Jensen, J. L. (1987). A note on asymptotic expansions for Markov chains using operator theory. Adv. Appl. Math. 8, 377-392.
[18] Keener, R. (1990). Asymptotic expansions in multivariate renewal theory. Stoch. Proc. Appl. 34, 137-153.
[19] Keener, R. (2006). Multivariate sequential analysis in linear boundaries. IMS Lecture Notes-Monograph Series 50, 58-79.
[20] Kou, S. and Zhong, H. (2013). First passage times of two dimensional Brownian motion. Technical Report.
[21] Lai, T. L. and Siegmund, D. (1977). A nonlinear renewal theory with applications to sequential analysis. I. Ann. Statist. 5, 946-954.
[22] Lai, T. L. and Siegmund, D. (1979). A nonlinear renewal theory with applications to sequential analysis. II. Ann. Statist. 7, 60-76.
[23] Li, D. (2000). On default correlation: a copula function approach. J. Fixed Income 9, 43-54.
[24] Merton, R. C. (1974). On the pricing of corporate debt: the risk structure of interest rates. J. Financ. 2, 449-470.
[25] Meyn, S. P. and Tweedie, R. L. (1993). Markov Chains and Stochastic Stability. Springer-Verlag, New York.
[26] Nagaev, S.V. (1965). Some limit theorems for large deviations. Theo. Probab. Appl. 10, 231-254.
[27] Siegmund, D. (1968). On the asymptotic normality of one-sided stopping rules. Ann. Math. Statist. 39, 1493-1497.
[28] Siegmund, D. (1985). Sequential Analysis. Springer-Verlag, New York.
[29] Tartakovsky, A. G. (2005). Asymptotic performance of a multichart CUSUM test under false alarm probability constraint. Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference, 320-325.
[30] Tartakovsky, A. G. and Veeravalli, V. V. (2008). Asymptotically optimal quickest change detection in distributed sensor systems. Sequential Anal. 27, 441475.
[31] Woodall, W. H. and Ncube, M. M. (1985). Multivariate CUSUM quality-control procedures Control Procedures. Technometrics 27, 285-292.
[32] Woodroofe, M. (1976). A renewal theorem for curved boundaries and moments of first passage time. Ann. Probab. 4, 67-80.
[33] Xie, Y. and Siegmund, D. (2013). Sequential multi-sensor change point detection. Ann. Statist. 41, 670-692.
[34] Zhang, C. H. (1988). A nonlinear renewal theory. Ann. Probab. 16, 793-824.
[35] Zhou, C. S. (2001). An analysis of default correlations and multiple defaults. Rev. Financ. Stud. 14, 555-576.