| 研究生: |
吳昆財 Kun-Tsai Wu |
|---|---|
| 論文名稱: |
金屬芯印刷電路板設計對高功率發光二極體的散熱影響 |
| 指導教授: |
蕭述三
Shu-San Hsiau |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系在職專班 Executive Master of Mechanical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 發光二極體 、接面溫度 、熱阻值 、電路板的導熱銅箔層設計 、熱電耦合設計 、延伸面積設計 |
| 外文關鍵詞: | light-emitting diodes, junction temperature, thermal resistance, copper foil layer design of Printed Circuit Board, thermoelectric coupling design, extended area design |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前發光二極體在固態照明上的應用越來越廣,可以應用在室內照明、戶外照明、背光源、汽車照明、交通號誌燈及其它產業等。當LED的應用趨勢愈普及化,意味著LED的效率正在逐步提升當中。由於LED的輸入功率只有30%轉換成光,70%轉換成熱,因此,LED熱管理的問題更受到重視。若想要降低LED的接面溫度與熱阻值,其中最重要的一項是電路板的導熱銅箔層設計。
本研究最主要的目的是設計一款最佳化的金屬芯印刷電路板,可以降低來自於晶片的熱。使用散熱模擬分析、散熱實驗,對金屬芯印刷電路板散熱性能做探討。透過SolidWorks Flow Simulation軟體的分析與實驗結果的比對,要先確認分析的合理性,再尋找散熱解決對策。
比較六款不同金屬芯印刷電路板的導熱銅箔層設計,並藉由接面溫度及熱阻來評估在高功率LED模組上的散熱效能。從散熱模擬分析及散熱實驗結果顯示,由於Type-3導熱銅箔層的熱電耦合設計和具延伸面積設計,LED模組呈現出大約最低的接面溫度65.73°C與熱阻值17.21°C/W。依據模擬結果與散熱量測可以確認基板的幾何型式直接影響到LED的接面溫度及熱阻。
The light-emitting diodes (LED) in the application of solid-state lighting is interested. LEDs one can be used as indoor lighting, outdoor lighting, backlighting, daytime running light, traffic light and the other industries, etc.. When the trend of the increasing popularity of LED applications, the efficiency of LED has also been increased gradually. Due to only 30% of the input power been converted to light and nearly 70% been converted to heat. The thermal management issue of the LEDs become important and crucial. To reduce the junction temperature and thermal resistance, one important issue is copper foil layer design of Printed Circuit Board.
The main purpose of this study is to design an optimizing Metal Core Printed Circuit Board in order to reduce the heat from the chipset. This work investigates the cooling ability of the MCPCB by thermal simulation analysis and thermal experiments of LED. This study uses commercial software, SolidWorks Flow Simulation, to analyze the temperature field and the results are compared with experimental data to verify the simulation analysis.
Six different copper foil design of MCPCB were compared. The junction temperature and thermal resistance, were used to evaluate the thermal performance on high power LED module in this study. From the thermal simulation analysis and thermal experiments results, the LED module showed a minimum junction temperature and thermal resistance at about 65.73°C and 17.21°C/W due to the thermoelectric coupling design and extended area design of the copper foil layer in Type-3. According to the simulation results and temperature measurement, we can make sure that the substrate geometry has directly effects on the junction temperature and thermal resistance of an LED.
[1] 張致吉,「LED構裝材料產業與市場概況」,工業材料,329期,94-100頁,2014年5月。
[2] Su, Y. F., Hung, T. Y., Yang, S. Y., and Chiang K. N., “A Study on the Thermal Performance of a Chip-in-substrate-type LED Package Structure,” CPMT Symposium Japan, 2010 IEEE, pp. 1-4, Tokyo, 2010.
[3] Hwu, F. S., Sung, T. H., Tseng, J.W., Qiu, H., and Chen, J. C., “A Numerical Model for Studying Multimicrochip and Single-Chip LEDs With an Interdigitated Mesa G,” 2013, Photnisc Journal, IEEE, Vol. 5, Issue 2, pp. 1-16.
[4] Vipradas, A., Takawale, A., Tripathi, S., Swakul, V., Kaisare, A., and Tonapi, S., “A Parametric Study of a Typical High Power LED Package to Enhance Overall Thermal Performance,” 13th IEEE Intersociety Conference, Thermal and Thermomechanical Phenomena in Electronic Systems (Itherm), pp. 308-313, San Diego, CA, 2012.
[5] 林志偉、徐可芳和黃忠民,「LED軟性面光源發展與應用」,工業材料,329期,131-134頁,2014年5月。
[6] Sher, S., “LEDs to Account for a Quarter of Global Lighting Market by2016,” NPD Display Search, LED Lighting Market and Forecast Report. http://www.displaysearch.com/cps/rde/xchg/displaysearch/hs.xsl/130416_led_to_account_for_a_quarter_of_global_lighting_market_by_2016.asp.
[7] Ying, C., “2014年全球LED商照市場滲透率年成長有望達23%,” 取自http://www.ledinside.com.tw/research/20140530-29435.html
[8] Chung, C. H., Yang, K. S., Chien, K. H., Jeng, M. S., and Lee, M. T., 2014, “Heat Transfer Characteristics in High Power LED Packaging,” http://dx.doi.org/10.6493/SmartSci.2014.169
[9] Kudsieh, N., Khizar, M., and Raja, M. Y. A., 2011, “3D thermal analysis of AlGaN/GaN high power ultraviolet light-emitting diodes,” High Capacity Optical Networks and Enabling Technologies (HONET), pp. 46-50.
[10] Osram, “Thermal Characteristics of LEDs,” OSRAM Opto Semiconductors, Auggust 2011.
[11] Ivan,「2010年LED散熱基板的趨勢」,取自http://www.ledinside.com.tw/knowledge/20091113-11322.html
[12] Lin, Y. C., Zhou, Y., Tran, N. T., and Shi, F. G., “LED and Optical Device Packaging and Materials, ” 2009, Materials for Advanced Packaging, Springer US, pp. 629-980.
[13] 廖如仕,「高功率LED模組用有機散熱基板材料」,工業材料,329期,111-115頁,2014年5月。
[14] 邱國創,「LED高散熱封裝基板技術之發展與開發」,工業材料,306期,169-176頁,2012年6月。
[15] 呂保儒和盧昭暉,「PCB散熱特性對於QFN封裝之影響」,中國機械工程學會第二十四屆全國學術研討會論文集,117-122頁,中原大學,桃園市中壢區,民國96年11月。
[16] Ha, M. S., “Thermal analysis of high power LEDs array,” Georgia Insititute of Technology, December 2009.
[17] Law, S. B., Permal, A., and Devarajan., “Effective Heat Dissipation of High Power LEDs Mounted on MCPCBs with Different Thickness of Aluminium Substrates,”IEEE-ICSE2012 Proc., Kuala Lumpur, pp. 707-710, Malaysia, 2012.
[18] Negrea, C., and Svasta, P., “Modeling of Thermal Via Heat Transfer Performance for Power Electronics Cooling,” 2011 IEEE 17th International Symposium for Design and Technology in Electronic Packaging (SIITME), Timisoara, pp. 107-110, October 2011.
[19] Juntunen, E., Tapaninen, O., Sitomaniemi, A., Jamsa, M., Heikkinen, V., Karppinen, M., and Karioja, P., “Copper-Core MCPCB With Thermal Vias for,” 2014, IEEE Transactions on Power Electronics, Vol. 29, No. 3, pp. 1410-1417.
[20] NICHIA, “Thermal Design of the LEDs,” SE-AP00002, Jun. 15, 2011.http://www.nichia.co.jp/en/product/led_technicaldata.html
[21] OSRAM, “External Thermal Resistance Substrates,” 2012. http://ledlight.osram-os.com/wp-content/uploads/2013/01/OSRAM-OS_LED-FUNDAMENTALS_External-Thermal-Resistance-Substrates_1-3-2012_SCRIPT.pdf
[22] Huber, R., “Thermal Management of Golden Dragon LED,” http://www.osram-os.com/osram_os/en/producTs/product-catalog/led-light-emitting-diodes/golden-dragon/index.jsp.
[23] Kim, I., Cho, S., Jung, D., Lee, C. R., Kim, D., and Baek, B. J., “Thermal analysis of high power LEDs on the MCPCB,” 2013, Journal of Mechanical Science and Technology, Volume 27, Issue 5, pp. 1493~1499.
[24] OSRAM, “Thermal Measurement Guidelines for SSL LEDs,” http://ledlight.osram-os.com/wp-content/uploads/2010/08/Thermal-Measurement-Guidelines-for-SSL-LEDs.pdf
[25] 實威國際股份有限公司,SolidWorks Flow Simulation標準訓練課程講義,CAE產品事業部,台北,2012。
[26] 實威國際股份有限公司,SolidWorks線上使用手冊,取自http://help.solidworks.com/2013/Chinese/SolidWorks/sldworks/r_welcome_sw_online_help.htm?id=2d9889fa3a484a37b6601b61266fb74d
[27] NICHIA, “NS6W183AT Specification for White LED,” STS-DA2-5744, Apr. 15, 2011.
[28] 開昌貿易股份有限公司,MX100產品規格書,取自http://www.kaizer.com.tw/uploads/product/tw/BU04M10A01-01E_060.pdf
[29] JEDEC No. 51-51 (Implementation of the Electrical Test Method for the Measurement of Real Thermal Resistance and Impedance of Light-Emitting Diodes with Exposed Cooling).
[30] 賴耿陽,熱計測溫度測定實務,復漢出版社,台南市,民國七十五年。
[31] Duff, M., and Towey, J., “Two Ways to Measure Temperature Using Thermocouples Feature Simplicity, Accuracy, and Flexibility,” Analog Dialogue 44-10, October 2010, http://www.analog.com/library/analogDialogue/archives/44-10/thermocouple.html
[32] OMEGA Engineering Corporation. “Quick Disconnect Thermocouples with Miniature Connectors,” http://sea.omega.com/tw/pptst/JMQSS.html
[33] Thermometrics Connectors, “Type T Thermocouple (Copper / Constantan),” http://www.thermometricscorp.com/thermocouple.html
[34] JEDEC No. 51-14 (Transient Dual Interface Test Method for the Measurement of the Thermal Resistance Junction to Case of Semiconductor Devices with Heat Flow Though a Single Path).
[35] 鄭宗杰、余廣致、劉君愷、蔡伯晨和鄭明欣,「FC-PBGA之熱流模擬簡介」,奈米通訊,第十一卷,第四期,第17-21頁。
[36] 林柏佐:信賴區間與信心水準的解讀,取自http://web.ntnu.edu.tw/~494402345/CI/CI.pdf
[37] Wikimedia Foundation, Student’s t-distribution, https://zh.wikipedia.org/wiki/%E5%AD%A6%E7%94%9Ft-%E5%88%86%E5%B8%83