跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鍾瑞庭
Ruei-ting Chung
論文名稱: 含二苯乙烯三吡啶衍生物之金屬錯合物:合成、光物理、光化學性質及其陽離子感測研究
Synthesis, Photophysics, Photochemistry and Binding Studies of a Series of Styrylphenyl Terpyridine Metal Complexes
指導教授: 孫世勝
Shih-Sheng Sun
陳銘洲
Ming-Chou Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
畢業學年度: 95
語文別: 中文
論文頁數: 149
中文關鍵詞: 冠醚感測器三吡啶二苯乙烯光化學異構化胺基共軛效應
外文關鍵詞: photochemistry, stilbene, crown ether, terpyridine, sensor, Amino-Conjugation Effect, isomerization
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用Wittig reaction 與 Horner-Emmons reaction 方法合成二苯乙烯三吡啶系列分子,於反式-4-二苯乙烯位置銜接推電子基,藉以提升其在激發態電荷轉移之能力,並以光化學實驗分析上述行為對分子異構化的影響。
    我們引入「胺基共軛效應」( Amino-Conjugation Effect ) 使用單氮冠醚和二苯胺基作為推電子基,由溶劑效應的實驗結果證實,此類分子在激發態時具有很強烈的分子內電荷轉移行為,其能力大小依序為 L4 ≈ L5 > L3。透過光化學實驗結果顯示,光學異構化的行為被大幅降低,歸因於胺取代基能有效共軛的結果。我們進一步將此類分子與釕金屬和鉑金屬進行配位,利用配位基分子本身強烈的分子內電荷轉移機制與中心金屬MLCT ( metal-to-ligand charge transfer ) 的相互作用下,形成 donor-acceptor-donor 型式且具顏色改變的離子感測器。離子受體使用硫取代的單氮冠醚形成一軟鹼端,經 UV-vis 吸收光譜的滴定證實,此類感測器對於軟酸類的汞離子與銀離子具有良好的辨識能力與選擇性。
    另外透過模擬計算、NMR 滴定實驗和UV-vis 的吸收度改變量與離子當量之量測,發現鉑金屬錯合物的系列分子與汞離子或銀離子作用機制,並非單純的以單氮硫雜環冠醚端形成 1:1 的基本模式,而是成為 1:1、1:3 和 1:1、1:2 的特殊行為模式,由 NMR 證實是鉑金屬共同參與了反應,因而有如此特殊的行為模式。


    A new series of stilbene containing 2,2’:6’,2”-terpyridine ligands has been synthesized and evaluated for their abilities for cation recognition. In order to enhance the internal charge transfer (ICT), we introduced different electron-donating subsituents such as triphenylamine and thioaza-crown. According to the results from solvent dependent studies, both L4 and L5 exhibited larger Stokes shift than L3, indicatig a stronger internal charge transfer effect in L4 and L5. Moreover, the reduced isomerization behavor in L4 and L5 is attributed to the “ Amino-Conjugation Effect ”.
    The ICT band of L3, L4, and L5 exhibited red shift with approximate 100 nm when coordinated to Pt(II). These metal-based chemosensors, especially PtL5Cl2, displayed stronge affinities towards Hg(II) and Ag(I) over other cations, and the changes in color was easy to be identified by naked eyes.

    目錄 ................................................................... Ⅲ 圖目錄 ................................................................. Ⅴ 表目錄 ................................................................. Ⅷ 式目錄 ................................................................. Ⅷ 附錄目錄 ................................................................Ⅸ 第一章 緒論 ............................................................ 1 1-1 前言 ............................................................... 1 1-2 分子辨識 ........................................................... 1 1-3 感測器之組成與原理 ................................................. 3 1-4 冠醚類 ( Crown ether ) 介紹 ........................................ 3 1-4-1 冠醚類分子化學感測器與作用機制 ................................... 4 1-4-1-1光誘導電子轉移 ( Photoinduced electron transfer,PET ) .......... 6 1-4-1-2激態雙體 ( Excimer ) ............................................ 7 1-4-1-3分子內部電荷轉移 ( Internal charge transfer,ICT ) .............. 8 1-4-2 冠醚類過渡金屬錯合物之離子感測器 ................................. 9 1-5 二苯乙烯之光化學行為與取代基影響 .................................. 13 1-5-1 胺基共軛效應 .................................................... 14 1-6 溶劑效應於 ICT 分子之影響 ......................................... 16 1-7 理論計算簡介 ...................................................... 18 1-8 研究動機 .......................................................... 19 第二章 實驗 ........................................................... 22 2-1 實驗用藥品 ........................................................ 22 2-2 儀器設備及工具軟體 ................................................ 22 2-2-1 核磁共振光譜儀 (NMR ) ........................................... 22 2-2-2 循環伏特安培法 (Cyclic Voltammetry,CV ) ........................ 23 2-2-3 質譜儀 ( Mass Spectrometer,Mass ) .............................. 24 2-2-4 元素分析儀 (Elemental Analyzer,EA ) ............................ 24 2-2-5 紫外光-可見光吸收光譜儀 (UV-Vis Spectrophotometer,UV-vis) ...... 24 2-2-6 螢光光譜儀 ( Fluorescence Spectrometer,PL ) .................... 25 2-2-7 汞燈光源模組 ( Mecury Lamp Housing,Hg-lamp ) ................... 26 2-2-8 Spartan 04 ...................................................... 27 2-2-9 CAChe ........................................................... 27 2-2-10 SPECFIT/32 ..................................................... 28 2-3 實驗流程步驟 ...................................................... 29 2-4 實驗合成步驟 ...................................................... 34 第三章 結果與討論 ..................................................... 47 3-1 合成討論 .......................................................... 47 3-1-1 冠醚合成 ........................................................ 47 3-1-2 醛基取代反應(Formylation) ....................................... 48 3-1-3 甲苯三?啶(ttpy)溴化反應 ......................................... 48 3-1-5 雙鍵合成:Wittig reaction v.s. Horner-Emmons reaction ........... 49 3-1-6 金屬錯合物之合成 ................................................ 50 3-3 第一部份研究:L3、L4 及 L5 之性質 ................................. 51 3-3-1 理論計算 ........................................................ 51 3-3-2 溶劑效應 ........................................................ 53 3-3-3 光學異構化 ...................................................... 59 3-4 第二部份研究:釕金屬錯合物 ........................................ 63 3-4-1 基本 UV-vis 吸收與螢光放射光譜 .................................. 63 3-4-2 電化學 .......................................................... 65 3-4-3 離子感測 ........................................................ 66 3-5 第三部份研究:鉑金屬錯合物 ........................................ 68 3-5-1 理論計算 ........................................................ 68 3-5-2 基本光譜性質 .................................................... 69 3-5-3 離子感測 ........................................................ 70 3-5-4 離子感測機制:PtL5Cl2 vs. 汞離子................................. 74 3-5-5 離子感測機制:PtL5Cl2 vs. 銀離子................................. 78 第四章 結論 ........................................................... 82 參考文獻 .............................................................. 83

    [1] Bioorganic Chemistry - A Chemical Approach to Enzyme Action, Hermann
    Dugas, Springer., 1996.
    [2] Lehn, J.-M. Angew. Chem. Int. Ed. Engl. 1988, 27, 89.
    [3] Supramolecular Chemistry Balzani V., De Cola, L., Kluwer Academic
    Publishers, 1992.
    [4] Swager, T. M. Acc. Chem. Res. 1998, 31, 201.
    [5] Valeur, B.; Leray I. Coord. Chem. Rev. 2000, 205, 3.
    [6] Gokel, G. W.; Leevy, W. M.; Weber, M. E. Chem. Rev. 2004, 104, 2723.
    [7] Pedersen, C. J. J. Am. Chem. Soc., 1967, 89, 7017.
    [8] Pedersen, C. J. J. Am. Chem. Soc. 1967, 89, 2495.
    [9] Peter J. Cragg A Practical Guide to Supramolecular Chemistry, Wiley:
    Chichester, 2005.
    [10] R. N. Greene Tetrahedron Lett., 1972, 13, 1793.
    [11] de Silva, A. P.; de Silva, S. A. J. Chem. Soc., Chem. Commun. 1986, 1709.
    [12] Winnik, F. M. Chem. Rev. 1993, 93, 587.
    [13] Bouas-Laurent, H.; Castellan, A.; Daney, M.; Desvergne, J.-P.; Guinand, G.;
    Marsau, P.; Riffaud, M. H. J. Am. Chem. Soc., 1986, 108, 315.
    [14] Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 2nd ed. Kluwer
    Academic/Plenum Publishers: New York, 1999.
    [15] de Silva, A. P.; Nimal Gunaratne, H. Q.; Gunnlaugsson, T.; Huxley, A. J. M.;
    McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. Rev. 1997, 97, 1515.
    [16] Dumon, P.; Jonusauskas, G.; Dupuy, F.; Pee, P.; Rulliere, C.; Letard, J.-F.;
    Lapouyade, R. J. Phys. Chem. 1994; 98, 10391.
    [17] Yang, J.-S. The Chinese Chem. Soc., Taipei 2002, 60, 611.
    [18] Charbonniere, L. J.; Ziessel, R. F.; Sams, C. A.; Harriman, A. Inorg. Chem.
    2003, 42, 3466.
    [19] Schmittel, M.; Lin, H.-W. Angew. Chem. Int. Ed. 2007, 46, 893.
    [20] MacQueen, D. b.; Schanze, K. S. J. Am. Chem. Soc., 1991, 113, 6108.
    [21] Tang, W.-S.; Lu, X.-X.; Wong,K. M.-C.; Vivian Yam, W.-W. J. Mater. Chem.,
    2005, 15, 2714.
    [22] (a) Pearson, R. G. J. Am. Chem. Soc., 1963, 85, 3533.; (b) Pearson, R. G.
    Chem. Br. 1967, 3, 103.
    [23] Görner, H.; Kuhn, H. J. Adv. Photochem. 1995, 19, 1.
    [24] Lewis, F. D.; Kalgutkar, R. S.; Yang, J.-S. J. Am. Chem. Soc. 1999, 121,
    12045.
    [25] (a) Adachi, C.; Tsutsui, T.; Saito, S. Appl. Phys. Lett. 1990, 56, 799.; (b)
    Adachi, C.; Tsutsui, T.; Saito, S. Appl. Phys. Lett. 1990, 56, 531.; (c) Adachi,
    C.; Tsutsui, T.; Saito, S. Appl. Phys. Lett. 1989, 55, 1489.
    [26] Yang, J.-S.; Chiou, S.-Y. ; Liau, K.-L. J. Am. Chem. Soc. 2002, 124, 2519.
    [27] Fung, S. Y.; Duhamel, J.; Chen, P. J. Phys. Chem. A 2006, 110, 11446.
    [28] (a) Gilabert, E.; Lapouyade, R.; Rulliere, C. Chem. Phys. Lett. 1988, 145, 262.;
    (b) Rettig, W.; Majenz, W. Chem. Phys. Lett. 1989, 154, 335.; (c) Rullière, C.;
    Abraham, E.; Oberlé, J.; Jonusauskas, G.; Lapouyade, R. J. Photochem.
    Photobiol. A: Chem. 1997, 105, 101.
    [29] Rettig, W.; Létard, J.; Lapouyade, R. Chem. Phys. Lett. 1994, 222, 209.
    [30] El-Gezawy, H.; Rettig, W. Chem. Phys. 2006, 327, 385.
    [31] Mataga, N.; Kaifu, Y.; Koizuni, M. Bull. Chem. Soc. Jpn., 1956, 29, 465.; (c)
    Onsager, L. J. Am. Chem. Soc., 1936, 58, 1486.
    [32] (a) Parker, C. A. Proc. Roy. Soc. (London), 1953, A220, 104.; (b) Hatchard, C.
    G.; Parker, C. A. Proc. Roy. Soc. (London), 1956, A235, 518.
    [33] (a) Jimenez, D.; Martinez-Manez, R.; Sancenon, F.; Ros-Lis, J. V.; Soto, J.;
    Benito, A.; Garcia-Breijo, E. Eur. J. Inorg. Chem. 2005, 2393.; (b) Coskun, A.;
    Akkaya, E. U. J. Am. Chem. Soc., 2006, 128, 14474.
    [34] Juris, A.; Balzani, V.; Barigelletti, F.; Campagna, S.; Belser, P.; von Zelewsky,
    A. Coord. Chem. Rev. 1988, 84, 85.
    [35] Chambron, J.-C.; Coudret, C.; Collin, J.-P.; Guillerez, S.; Sauvage, J.-P.;
    Barigelletti, F.; Balzani, V.; De Cola, L.; Flamigni, L. Chem. Rev. 1994, 94,
    993.
    [36] (a) Calvert, J. M.; Caspar, J. V.; Binstead, R. A.; Westmoreland, T. D.; Meyer,
    T. J. J. Am. Chem. Soc. 1982, 104, 6620.; (b) Collin, J.-P. Inorg. Chem. 1998,
    37, 6084.
    [37] Maestri, M.; Armaroli, N.; Balzani, V.; Constable, E. C.; Cargill Thompson, A.
    M. W. Inorg. Chem. 1995, 34, 2759.
    [38] Ouchi, M.; Inoue, Y.; Kanzaki, T.; Hakushi, T. J. Org. Chem. 1984, 49 , 1408.
    [39] Snow, A. W.; Foos, E. E. Synthesis 2003, 4, 509.
    [40] Chambers, D.; Denny, W. A. J. Chem. Soc., Perkin Trans. 1, 1986, 1055
    [41] Lee, S.K.; Hwang, D.-H.; Jung, B.-J.; Cho, N.S.; Lee, J.; Lee, J.-D.; Shim,
    H.-K. Adv. Funct. Mater. 2005, 15, 1647.
    [42] (a) Weiss, M. J. Am. Chem. Soc. 1952, 74, 200.; (b) Collin, J. P.; Guillerez, S.;
    Sauvage, J.-P.; Barigelleti, F.; De Cola, L.; Flamigni, L.; Balzani, V. Inorg.
    Chem. 1991, 36, 4230.
    [43] Whittle, B.; Batten, S. R.; Jeffery, J. C.; Rees, L. H.; Ward, M. D. J. Chem.
    Soc., Dalton Tran. 1996, 4249.
    [44] Newkome, R.G.; Cho, J. T.; Moorefield, C. N.; Cush, R.; Russo, P. S.;
    Godinez, L. A.;Saunders, M. J.; Mohapatra, P Chem. Eur. J. 2002, 8, 2946.
    [45] McDermott, J. X.; White, J. F., Whitesides, G. M. J. Am. Chem. Soc. 1976, 98,
    6521.
    [46] Sakuda, E.; Funahashi, A.; Kitamura, N. Inorg. Chem. 2006, 45, 10670.
    [47] Du, H.; Fuh, R. A;. Li, J.; Corkan, A.; Lindsey, J. S. Photochemistry and
    Photobiology 1998, 68, 141.
    [48] (a) Bokeriya, E. N.; Viktorova, V. S.; Karegishvili, L. I.; Kovyrzina, K. A.;
    Kushakevich, Y. P.; Radaikina, L. A. J. Org. Chem. USSR (Engl. Transl.) 1979,
    15, 1944.; (b) Etse, J. T.; Gray, A. I.; Lavaud, C.; Massiot, G.; Nuzillard, J.-M.;
    Waterman, P. G. J. Chem. Soc., Perkin Trans. 1 1991, 861.
    [49] Lees, A. J. Analytical Chemistry, 1996, 68, 226.
    [50] (a) Fornies, J.; Martin, A.; Sicilia, V.; Villarroya, P. Orgnometallics 2000, 19,
    1107.; (b) Ara, I.; Falvello, L. R.; Fornies, J.; Sicilia, V.; Villarroya, P.
    Orgnometallics 2000, 19, 1107.; (c) Cucciolito, M. E.; Giordano, F.; Panunzi,
    A.; Ruffo, F.; De Felice, V. J. Chem. Soc. Dalton Trans 1993, 3421. (d) Janzen,
    M. C.; Jennings, M. C.; Puddephatt, R. J. Inorganica Chimica Acta 2005, 358,
    1614.

    QR CODE
    :::