| 研究生: |
戴秉倫 Pin-Lun Tai |
|---|---|
| 論文名稱: |
承受圍壓條件下岩石孔隙率/滲透率同步量測技術與孔隙幾何因子量測新方法之建立 |
| 指導教授: |
董家鈞
Jia-Jyun Dong 陳瑞昇 Jui-Sheng Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 應用地質研究所 Graduate Institute of Applied Geology |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 134 |
| 中文關鍵詞: | 圍壓條件 、孔隙幾何因子 、脈衝衰減法 、孔隙率 、滲透率 、水力直徑 、克林堡效應 、滑流因子 |
| 外文關鍵詞: | Slip factor, Pressure-pulse decay method |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
孔隙結構與孔隙率是影響滲透率之關鍵因子,而孔隙幾何因子乃量化孔隙結構之常用參數。岩石受深埋作用影響,孔隙結構可能因應力條件而改變,然而前人利用孔隙率/滲透率量測結果評估孔隙幾何因子之方法,多僅適用於常壓條件。另外,量測孔隙率/滲透率時,未能採用相同試體,因此,樣本變異性可能影響試驗結果。本研究改良YOKO2高圍壓孔隙率/滲透率量測儀,以脈衝衰減法取代原先YOKO2滲透率量測採用之穩態法,並撰寫脈衝衰減法之解析解與半解析解程式以分析實驗數據率定滲透率。使YOKO2能同步量測承受圍壓條件下之孔隙率/滲透率(YOKO2-T1)。同時,本研究嘗試建立一於承受圍壓條件下孔隙幾何因子量測之新方法,利用孔隙率、滲透率以及氣體滲透率作克林堡修正時所得之滑流因子估算孔隙幾何因子,相較於前人研究更加省時且簡便。配合YOKO2-T1將能使孔隙率、滲透率量測與孔隙幾何因子計算不受試體變異性之影響並縮短實驗程序。本研究以湖山水庫卓蘭層黏土質粉岩與粉土質砂岩作為試體,粉土質砂岩之孔隙率/滲透率測量之圍壓條件為5 MPa~80 MPa,而黏土質粉岩之孔隙率/滲透率測量之圍壓條件為3 MPa~60 MPa。結果顯示;粉土質砂岩孔隙率隨有效應力增加由19.5%降至15.5%,黏土質粉岩孔隙率隨有效應力增加由10.5%降至7.4%。粉土質砂岩滲透率隨有效應力增加由5.69*10-15降至1.73*10-15 m2,黏土質粉岩滲透率隨有效應力增加由3.87*10-16降至5.23*10-17 m2。粉土質砂岩滑流因子隨有效應力增加由0.07增加至0.1 MPa,粉土質砂岩滑流因子隨有效應力增加由0.2增加至0.4 MPa。粉土質砂岩孔隙幾何因子之數值在40~60之間,黏土質粉岩孔隙幾何因子之數值則在5~10之間。以上量測結果皆符合前人研究之成果。說明本研究建立之YOKO2-T1其實驗數據與孔隙幾何因子量測新方法皆具有可信度。
To understand the variation of continue profile of the permeability in stratum, pore geometrical factor used to quantify the pore structure and porosity are key parameters. Pore structure could be changed by stress because of the rocks burial history. However, pore geometrical factor was usually measured under atmosheric pressure by previous studies. And using different rock sample to determine the permeability and porosity, resulting in variability of the samples. This study improve the permeability/porosity measurement system under high confining stress (YOKO2). Using the pulse-decay technology replace the steady-state flow method used by YOKO2 originally. Made YOKO2 can measure the porosity/permeability using the same rock sample. Additionally, this study try to propose a new method to measure the rock pore geometrical factor under confining stress. It could be faster than previous studies. Preliminary results show measurement of the permeability using pulse-decay method is similar to using steady-state flow method. And the values of the pore geometrical factor of the Argillaceous rocks are 5 to 10 which is similar to previous study. It show the method to measure the pore geometrical factor proposed by this study is credible.
[1] Kozeny, J., “Ueber kapillare leitung des wassers im Boden”, Stizungsber Akad Wiss Wien, Vol 136, pp. 271-306, 1927.
[2] Carman, P. C., Flow of gases through porous media, Butterworths Scientific Publications, London, 1956.
[3] Scheidegger, A. E., The physics of flow through porous media., third ed, University of Toronto Press., Toronto, 1974.
[4] Singh, V. P., Kinematic wave modeling in water resources: environmental hydrology, Wiley, New York, 1927.
[5] Carrier III, W. D., “Goodbye, hazen; hello, kozeny-carman”, Journal of Geotechnical and Geoenvironmental Engineering, 2003.
[6] Tiab, D., and Donaldson, E. C., Petrophysics: Theory and practice of measuring reservoir rock and fluid transport properties, Gulf Professional Publishing, an imprint of Elsevier, pp. 889, 2004.
[7] Odong, J., “Evaluation of empirical formulae for determination of hydraulic conductivity based on grain-size analysis”, Journal of American Science, Vol 3, pp. 54-60, 2007.
[8] Xu, P., and Yu, B., “Developing a new form of permeability and Kozeny-Carman constant for homogeneous porous media by means of fractal geometry”, Advances in Water Resources, Vol 31(1), pp. 74-81, 2008.
[9] Brace, W. F., Walsh, J. B., and Frangos, W. T., “Permeability of granite under high pressure”, Journal of Geophysical Research, Vol 73(6), pp. 2225-2236, 1968.
[10] Walsh, J. B., and Brace, W. F., “The effect of pressure on porosity and the transport properties of rock”, Journal of Geophysical Research, Vol 89, pp. 9425-9431, 1984.
[11] Kozeny, J., “Ueber kapillare leitung des wassers im Boden”, Stizungsber Akad Wiss Wien, Vol 136, pp. 271-306, 1927.
[12] Fair, G. M., and Hatch, L. P., “Fundamental factors governing the stream-line flow of water through sand”, Journal of the American Water Works Association, Vol 25, pp. 1551-1565, 1933.
[13] Loudon, A. G., “The computation of permeability from simple soil tests”, Geotechnique, Vol 3, pp. 165-183, 1952.
[14] Mostaghimi, P., Blunt, M., and Bijeljic, B., “Computations of absolute permeability on micro-CT images”, Mathematical Geosciences, Vol 45, pp. 103-125, 2013.
[15] Okazaki, K., Noda, H., Uehara, S., and Shimamoto, T., “Permeability, porosity and pore geometry evolution during compaction of Neogene sedimentary rocks”, Journal of Structural Geology, Vol 62, pp. 1-12, 2014.
[16] Odler, I., “The BET-specific surface area of hydrated Portland cement and related materials”, Cement and Concrete Reasearch, Vol 33, pp. 2049-2056, 2003.
[17] Klinkenberg, L. J., “The permeability of porous media to liquids and gases”, Drilling and Production Practice, American Petroleum Institute, New York, pp. 200-213, 1941.
[18] Hsieh, P. A., Tracy, J. V., Neuzil, C. E., Bredehoeft, J. D., and Silliman, S. E., “A transient laboratory method for determining the hydraulic properties of tight rocks- I. Theory”, International Journal of Rock Mechanics & Mining Science, Vol 18, pp. 245-252, 1981.
[19] Gensterblum, Y., Ghanizadeh, A., Cuss, R. J., Amann-Hildenbrand, A., Krooss, B. M., Clarkson, C. R., Harrington, J. F., and Zoback, M. D., “Gas transport and storage capacity in shale gas reservoirs- A review. Part A: Transport processes”, Journal of Unconventional Oil and Gas Resources, Vol 12, pp. 87-122, 2015.
[20] 楊盛博,「利用深井岩心探討岩性及構造作用對碎屑沉積岩孔隙率和滲透率之影響」,國立中央大學,碩士論文,2015。
[21] 許瑞育,「沉積岩應力相關之流體特性與沉積盆地之孔隙水壓異常現象」,國立中央大學,碩士論文,2007。
[22] Dicker, A. I., and Smits, R. M., “A practical approach for determining permeability from laboratory pressure-pulse decay measurements”, International Meeting on Petroleum Engineering, Society of Petroleum Engineers, 1988.
[23] Kranz, R. L., Frankel, A. D., Engelder, T., and Scholz, C. H., “The permeability of whole and jointed Barre granite”, International Journal of Rock Mechanics & Mining Science, Vol 16, pp. 225-234, 1979.
[24] Jones, S. C., “A technique for faster pulse-decay permeability measurements in tight rocks”, SPE Formation Evaluation, Vol 12, No. 1, pp.19-26, 1997.
[25] Shi, T., and Wang, C. Y., “Pore pressure generation in sedimentary basins: overloading versus aquathermal”, Journal of Geophysical Research, Vol 91(B2), pp. 2153-2162, 1986.
[26] Billiotte, J., Yang, D., and Su, K., “Experimental study on gas permeability of mudstone”, Physics and Chemistry of the Earth, Vol 33, pp.231-236, 2008.
[27] Cho, Y., Ozkan, E., and Apaydin, O. G., “Pressure-dependent natural-fracture permeability in shale and its effect on shale-gas well production”, SPE Reservoir Evaluation & Engineering, Vol 16(2), pp. 216-228, 2013.
[28] Wang, Q., and Zhan, H., “On different numerical inverse Laplace methods for solute transport problems”, Advances in Water Resources, Vol 75, pp. 80-92, 2015.
[29] Crump, K. S., “Numerical inversion of Laplace transforms using a Fourier series approximation”, Journal of the Association for Computing Machinery, Vol 23, pp. 89-96, 1976.
[30] de Hoog, F. R., Knight J. H., and Stokes, A. N., “An improved method for numerical inversion of Laplace transform”, SIAM Journal on Scientific Computing, Vol 3(3), pp. 357-366, 1982.
[31] Hollenbeck, K. J., “A matlab function for numerical inversion of Laplace transforms by the de Hoog algorithm”, 1998.
[32] Stehfest H., “Algorithm 368:numerical inversion of Laplace transform [D5]”, Communications of the ACM, Vol 13(1), pp. 47-49, 1970.
[33] Wang, Q., and Zhan, H., “On different numerical inverse Laplace methods for solute transport problems”, Advances in Water Resources, Vol 75, pp. 80-92, 2015.
[34] Dubner, H., and Abate, J., “Numerical inversion of Laplace transforms by relating them to the finite Fourier cosine transform”, Journal of the ACM (JACM), Vol 15(1), pp. 115-123, 1968.
[35] Rushing, J. A., Newsham, K. E., Lasswell, P. M., Cox, J. C., and Blasingame, T. A., “Klinkenerg-corrected permeability measurements in tight gas sands: steady-state versus unsteady-state techniques”, Annual Technical Conference and Exhibition, Society of Petroleum Engineers, 2004.
[36] Carles, P., Egermann, P., Lenormand, R., and Lombard, J. M., “Low permeability measurements using steady-state and transient methods”, International Symposium of the SCA, 2007.
[37] Zoback, M. D., and Byerlee, J. D., “The effect of microcrack dilatancy on the permeability of Westerly granite”, Journal of Geophysical Research, Vol 80(5), pp. 752-755, 1975.
[38] Florence, F. A., Rushing, J. A., Newsham, K. E., and Blasingame, T. A., “Improved permeability prediction relations for low permeability sands”, SPE Rocky Mountain Oil and Gas Technology Symposium, Denver, Colorado, USA, pp. 16-18, 2007.
[39] Civan, F., “Effective correlation of apparent gas permeability in tight porous media”, Transport in Porous Media, Vol 82, pp. 375-384, 2010.
[40] Tanikawa, W., and Shimamoto, T., “Klinkenberg effect for gas permeability and its comparison to water permeability for porous sedimentary rocks”, Hydrology and Earth System Science, Vol 3, pp. 1315-1338, 2006.
[41] Tanikawa, W., and Shimamoto, T., “Comparison of Klinkenberg-orrected gas permeability and water permeability in sedimentary rocks”, International Journal of Rock Mechanics & Mining Science, Vol 46, pp. 229-238, 2009.
[42] Sampath, K., and Keighin, C. W., “Factors affecting gas slippage in tight sandstones of cretaceous age in the Uinta Basin”, Journal of Petroleum Technology, Vol 34(11), pp. 2715-2720, 1982.
[43] 中興工程顧問股份有限公司,「湖山水庫工程計畫大壩工程細部規劃報告」,2006。
[44] Picard, M. D., “Classification of fine-grained sedimentary rocks”, Journal of Sedimentary Research, Vol 41, pp. 179-195, 1971.
[45] Wentworth, C. K., “A scale of grade and class terms for clastic sediments”, Journal of Geology, Vol 30, pp. 79-99, 1922.
[46] American Society for Testing and Materials, “Standard test method for particle-size analysis of soils”, ASTM D422-63, 2007.
[47] Dong, J. J., Hsu, J. Y., Wu, W. J., Shimamoto, T., Hung, J. H., Yeh, E. C., and Sone, H., “Stress-dependence of the permeability and porosity of sandstone and shale from TCDP Hole-A”, International Journal of Rock Mechanics and Mining Sciences, Vol 47(7), pp. 1141-1157, 2010.
[48] David, C., Wong, T. F., Zhu, W., and Zhang, J., “Laboratory measurement of compaction-induced permeability change in porous rocks: Implications for the generation and maintenance of pore pressure excess in the crust”, Pure and Applied Geophysics, Vol 143(1-3), pp. 425-456, 1994.
[49] Uehara, S., Shimamoto, T., Okazaki, K., Funaki, H., Kurikami, H., Niizato, T., and Ohnishi, Y., “Can surface samples be used to infer underground permeability structure? A test case for a Neogene sefimentary basin in Horonobe, Japan”, International Journal of Rock Mechanics & Mining Sciences, Vol 56, pp. 1-14, 2012.
[50] Funaki, H., Ishii, E., and Tokiwa, T., “Evaluation of the role of fracture as the major water-conducting feature in Neogene sedimentary rocks”, Journal of the Japan Society of Engineering Geology, Vol 50, 2009.