跳到主要內容

簡易檢索 / 詳目顯示

研究生: 邵勝添
Sheng-Tien Shao
論文名稱: 佈植氮離子與碳離子於未摻雜氮化鎵之特性研究
Coimplantation of N ion and C ion into undoped GaN
指導教授: 李清庭
Ching-Ting Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 91
語文別: 英文
論文頁數: 63
中文關鍵詞: 離子佈植氮化鎵
外文關鍵詞: GaN, C, implant, N
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 論文摘要
    本文的實驗是研究氮離子和碳離子同時及分別佈植於未摻雜之
    氮化鎵的特性研究,氮離子以45keV、90keV、200keV 等不同能量分
    別搭配2×1012 cm-2、4.5×1012cm-2、1×1013cm-2 等不同佈植濃度,而碳
    離子以30keV、65keV、150keV 等不同能量分別搭配1.8×1012 cm-2、4
    ×1012cm-2、9.5×1012cm-2 等不同佈植濃度,佈植在載子濃度約3.52×
    1016cm-3 之未摻雜之氮化鎵上,形成一層佈植深度約350nm,佈植濃
    度約達5×1017cm-3 的佈植層,藉以瞭解氮離子和碳離子佈植後的氮化
    試片特性。
    在光特性方面,利用拉曼(Raman) 量測顯示由佈植所造成的載
    子濃度之改變可由A1(LO) 模態之強度變化而初步得知;利用光激發
    螢光光譜(photoluminescence)的量測顯示,氮離子佈植會降低黃光區
    的發光強度且在波長683nm 附近會產生一個波峰,而碳離子將增強
    黃光放射的發光機制且在波長683nm 附近亦會產生一個波峰。
    在電性方面,由電流-電壓量測顯示,在相同的電壓下,經過氮
    離子和碳離子佈植後的試片再經過熱退火處理過後與未佈植的試片
    作比較,可以發現到其電流上的差異,以有佈植且經過900oC 熱處理
    的試片有著較佳的絕緣性。


    Coimplantation of N ion and C ion into undoped GaN

    論文摘要..................................................................................................... I 目錄............................................................................................................II 圖表目錄....................................................................................................V 第一章序論...............................................................................................1 1.1 背景及研究動機............................................................................1 1.2 實驗目的........................................................................................2 第二章量測系統及原理簡述..................................................................4 2.1 離子佈植簡述:............................................................................4 2.2 量測系統及原理概述....................................................................5 2.2.1 光激發光譜..........................................................................5 2.2.1.1 光激發螢光法...................................................................5 2.2.1.2 光激發螢光量測原理.......................................................6 2.2.1.3 光子在能帶間之躍遷型式: .............................................7 2.2.1.4 能隙隨溫度及摻雜濃度影響之變化: .............................8 2.2.2 拉曼光譜量測......................................................................9 2.2.2.1 拉曼光譜...........................................................................9 2.2.2.2 拉曼光譜原理:................................................................10 III 2.2.2.3 大角度入射的拉曼光譜測定方法...............................11 2.2.3 電流-電壓特性量測.........................................................12 2.2.3.1 電流-電壓特性量測法...................................................12 2.2.3.2 電流-電壓特性量測原理..............................................12 第三章實驗方法及量測步驟................................................................13 3.1 實驗準備......................................................................................13 試片準備.....................................................................................13 3.2 實驗步驟......................................................................................13 3.3 電流-電壓特性效應量測元件製作...........................................15 第四章結果與討論................................................................................16 前言....................................................................................................16 4.1 拉曼光譜討論與分析..................................................................16 4.1.1 拉曼光譜...........................................................................16 4.1.2 氮化鎵薄膜與拉曼光譜...................................................17 4.1.3 拉曼光譜與離子佈值.......................................................18 4.1.4 拉曼光譜與熱處理的修復過程........................................19 4.2 PL 討論與分析............................................................................19 4.2.1 氮化鎵的PL 光譜中之黃光放射....................................20 4.2.2 離子佈植後的PL 光譜....................................................21 IV 4.3 電流-電壓效應量測之討論與分析............................................26 4.3.1 電流-電壓效應量測.........................................................26 4.3.2 離子佈植後的電流-電壓特性.........................................26 第五章結論.............................................................................................28

    30
    參考文獻
    [1] J. C. Zolper, S. J. Pearton, R. G. Wilson, and R. A. Stall,
    “Implant activation and redistribution of dopants in GaN”, IEEE,
    Ion Implantation Technology, Proceedings of the 11th
    International Conference (1997)
    [2] J. K. Sheu, C. J. Tun, M. S. Tsai, C. C. Lee, G. C. Chi, S. J.
    Chang and Y. K. Su, “n+-GaN formed by Si implantation into
    p-GaN”, J. Appl. Phys. 91, 1845, 2002
    [3] 曾建峰,‘有機金屬氣相磊晶法低溫砷化鎵的變溫霍爾量測及
    深層能階暫態能譜量測“,交通大學電子物理所,碩士論文
    (1995)
    [4] 高孝維,”N 型氮化鎵高熱穩定性歐姆接觸之研究”,中央大
    學光電研究所,碩士論文(1999)
    [5] Dimity Kirillov, Heon lee, and James S. Harris, Jr., ”Raman
    scattering study of GaN films”, J. Appl. Phys. 80, 4058, 1996
    [6] F. A. Ponce, J. W. Steeds, C. D. Dyer and G. D. Pitt, “Direct
    imaging of impurity-induced Raman scattering in GaN”, Appl.
    Phys. Lett. 69, 2650, 1996
    31
    [7] W. Limmer, W. Ritter, and R. Sauer, “Raman scattering in
    ion-implanted GaN”, Appl. Phys. Lett. 72, 2589, 1998
    [8] 江博仁,”矽離子佈植於p 型氮化鎵之特性研究”,中央大學
    光電所,碩士論文(2001)
    [9] T. Kozawa, T. Kachi, H. Kano, M. Hashimoto, N. Koide, and K.
    Manabe, “Raman scattering from LO phonon-plasmon coupled
    modes in gallium nitride” J. Appl. Phys. 75, 1098, 1994
    [10] J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey,
    Jr., B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption
    coefficient, energy gap, exciton binding energy and
    recombination lifetime of GaN obtained from transmission
    measurements”, Appl. Phys. Lett. 71, 2572, 1997
    [11] Jörg Neugebauer and Chris G. Van de Walle, ”Gallium vacancies
    and the yellow luminescence in GaN”, Appl. Phys. Lett.69, 503,
    1996
    [12] J. C. Zolper, R. G. Wilson, S. J. Pearton, and R. A. Stall, “Ca and
    O implantation doping of GaN” Appl. Phys. Lett.68, 1945,
    1996
    [13] G. Li, S. J. Chua, S. J. Xu, W. Wang, P. Li, B. Beaumont, and P.
    Gibart, “Nature and elimination of yellow-band luminescence
    and donor-acceptor emission of undoped GaN” Appl. Phys. Lett.
    74, 2821, 1999
    [14] M. A. Reshchikov, F. Shahedipour, R. Y. Korotkov, B. W.
    Wessels, and M. P. Ulmer, “Photoluminescence band near 2.9ev
    in undoped GaN epitaxial layers”, J. Appl. Phys. 87, 3351, 2000
    [15] C. H. Seager, A. F. Wright, J. Yu and W. Götz, “Role of carbon
    in GaN”, J. Appl. Phys. 92, 6553, 2002
    [16] D. J. Chadi, “Atomic origin of deep levels in p-type GaN:
    Theory”, Appl. Phys. Lett. 71, 2970, 1997
    [17] T.L Tansley and R.J. Egan, “Point-defect energies in the nitrides
    of aluminum, gallium, and indium”, Phys. Rev B, 45, 10942,
    1992
    [18] Jörg Neugebauer and Chris G. Van de Walle, “Atomic geometry
    and electronic structure of native defects in GaN”, Phys. Rev. B,
    50, 8067, 1994

    QR CODE
    :::